Mechanical Seals in Decoker Units
Michael Huebner – Staff Engineer

2007 Coking.com Safety Seminar
May 7 – 10, 2007
League City, Texas

Agenda

- Decoker Unit Application Overview
- Critical Applications
- Support Systems
- Troubleshooting
- Open Discussion
Decoker Unit Application Overview

- What makes a mechanical seal application challenging?
 - High temperature
 - Coking
 - High pressure
 - Solids
 - Poor system performance

High Temperature Sealing

- Basic Seal Design Criteria
 - Materials must withstand maximum temperatures, typically up to 800 F (427 C)
 - Components must tolerate thermal expansion differences
 - Outboard seal must prevent atmospheric coking or solidification
 - Assembly must accommodate high axial shaft movement during warm-up
Typical High Temperature Seal

- BXRH
- Single seal
- Welded metal bellows
- Flexible stator
- Plan 62 steam quench

Material Selection

- Welded metal bellows: Alloy 718
 - Excellent HT physical properties
 - Good corrosion resistance including H₂S
- Flexible graphite gaskets
 - Excellent HT properties and corrosion resistance
 - No memory, requires mechanical loading
Material Selection

- Silicon Carbide and Carbon seal faces
 - Excellent HT properties and corrosion resistance
 - Use two hard faces with abrasive media
- Alloy metals or 316 SS for all other metal components
 - Maximize corrosion resistance
 - Don’t compromise with “cheap” bolts/screws

Tolerating Thermal Expansion

- Match thermal expansion in shrink fit
 - Carbon or silicon carbide seal face requires a low expansion bellows flange
 - High Chrome alloy is required with high Sulfur or Hydrogen Sulfide content
Thermal Expansion Rates

- Approximate rates of thermal expansion
 - AM-350 7 E-6 in/in °F
 - Alloy C-276 6 E-6 in/in °F
 - Alloy 718 7 E-6 in/in °F
 - 316 SS 9.5 E-6 in/in °F
 - Alloy 42 3 E-6 in/in °F
 - Carbon 3 E-6 in/in °F
 - SiC 3 E-6 in/in °F

Tolerating Thermal Expansion

- At ambient temp., the seal face is lapped flat
- As temp. increases, the bellows diaphragms expand faster than the bellows flange & face
- Expansion is absorbed in the hinge
- Seal face remains flat
Prevent Coking

- Use anti-coke device and throttle bushing with Plan 62 quench
 - Direct Plan 62 steam quench from gland toward seal faces to purge oxygen

Prevent Coking with Plan 62

- Quench atmospheric side of seal with steam
- Inlet at top of gland, outlet at bottom
- Use throttle bushing to direct flow to drain
- Minimal steam supply required, 3 psi (0.2 bar) typical maximum
Prevent Vacuum-Induced Dry Run

- Add Plan 11, 21, or 32 flush with a throat bushing to boost seal pressure
 - Positive pressure at the seal eliminates air ingestion and keeps the faces running wet
Plan 11 & 32 Flush

- Plan 11: bypass flush from discharge through orifice
 - Simplest flush that adds seal pressure

- Plan 32: flush from an external clean source
 - Best flush for a clean, isolated seal area

Plan 21 & 23 Flush

- Plan 21: bypass flush from discharge through orifice & cooler
 - Useful to lower flush temperature while adding pressure

- Plan 23: flush from internal pumping ring through cooler
 - Most efficient flush but provides too much cooling for coker unit applications
Accommodate Axial Growth

- Metal bellows allow long axial travel
 - During pump warm-up, the shaft may have faster axial growth relative to the casing
 - Bellows absorb transient shaft movement

Starting Hot Pumps

- Slow warm-up is essential for the shaft and housing to grow together
 - Rapid warm-up increases stresses on pump parts, alignment, piping, and seals
High Temperature Rotating Design

- BXH
- Single seal
- Welded metal bellows
- Flexible rotor
- Plan 62 steam quench

Rotating vs. Stationary Bellows

- Stationary Bellows
 - Allows higher speeds
 - Absorbs shaft misalignment
 - Steam quench keeps bellows ID clean
- Rotating Bellows
 - Self-cleaning bellows OD
 - Generally shorter, used in dual seals
High Temperature Dual Seals

• Dual seals offer some advantages in high temperature applications
 ➢ Eliminate coking conditions on atmospheric side
 ➢ Operate under vacuum conditions
 ➢ Add safety measure
 ➢ Assist monitoring requirements

HT Dual Seal Considerations

• Wet barrier seals
 ➢ Barrier fluid must be suitable for sustained high temperature condition
 ➢ Reservoir must be larger than normal and cooling coils are mandatory
 ➢ Design must allow room for barrier fluid to circulate under IB seal
 ➢ How to rectify up to 800 F (427 C) pump with 200 F (93 C) maximum barrier fluid?
Plan 32 Flush for Dual Seals

- Flush isolates, cools, and protects inboard seal
 - Turn on flush before starting and leave it on after stopping pump
 - Flush fluid must be compatible with process, may come from similar process
 - Flow rate is low, use throat bushing to isolate seal area
 - Flush source must be reliable

Dual Seal Plan 52 & 53A

- Plan 52: unpressurized, with orifice in vent
- Plan 53A: pressurized
- Safety backup
- Prevents coking
- Provides some cooling to the inboard seal
- Can protect against pressure fluctuations
Good Piping Practices

- Minimize line losses
- Use large diameter tubing
- Only upward sloping lines
- Use long radius bends
- Minimize component losses
- Optimize for thermal siphon
- Check rotation direction
- Test for leaks

Bad Piping Practices

- Hard piping
- Fittings
- Valves
- Long runs
- Excess elevation
- Vapor traps
- Not self-venting
HT Dual Seal Considerations

- Dry containment (outboard) seals
 - Plan 72 steam purge must flow between seals to prevent inboard seal coking
 - Dual seal must drain condensate and process leakage to Plan 75 collection vessel
 - Containment seal does not protect inboard seal from running dry under heavy vacuum
 - Low pressure steam may leak into process
 - Most applications still require inboard flush

HT Containment Seal

- Containment seals were introduced in the 2nd Edition of API 682
 - No applications in decoker units were found but could be viable alternative
Jet Pump Seal

- With clean Plan 32 flush, coke fines in process won't affect seal faces
 - Lose the flush and suffer abrasive wear
- High pressure jet pump for the decoker tool uses QBR pusher seal
 - Flexible stator provides good face tracking

Conclusions

- Decoker unit seal applications are not so different from other parts of the refinery - focus on fundamental seal practices
- High temperature coker feed/charge pump seals require careful attention to seal design and system operation
- Jet pump seals achieve long life when coke fine-induced abrasion is prevented