Maintenance Challenges

- Contents of presentation
 - History
 - Basic process overview
 - Challenges:
 - Aging, bulging and cracking drums
 - Deterioration of ring beams
 - Aging furnaces, retirement / replacement strategies

Maintenance Challenges of a 30+ year, 8 Drum, Primary Unit Delayed Coker
Maintenance Challenges

- Challenges: (continued)
 - de-heading
 - Coke condensate drum retirement
 - Coke cutting system
 - Future / ongoing developments

- Achievements:
 - 75% to 92% Mechanical Availability
 - 45 Kbbls/day to 125 Kbbls/day
Maintenance Challenges

- History
 - Constructed in 1967 as a 3 set i.e. six drum unit
 - Primary unit in Upgrading not a back end unit
 - Initial processing capacity of 3000 bbl/hr on 24 hour cycles
 - A fourth set added in 1980

- 1997 went to 8 drum operation on 18 hour cycles
- Installed a vacuum unit in 1998 to further process diluted bitumen, recovery of diluent and HVGO, LVGO blend components
- Installed second steam out system to handle extra vapor traffic in 2000
- Moving towards 12 hour cycles
Maintenance Challenges

- Basic process overview
 - Tar sand is mined, bitumen is extracted and Naphtha added in the Extraction facility to allow transportation
 - Diluted Bitumen from Extraction facility feeds a Diluent Recovery Unit and a Vacuum unit

Maintenance Challenges

- Diluent is recovered and shipped back to Extraction facility
- Recovered bitumen & vacuum bottoms as coker charge, LVGO & HVGO used as blend components
- Coker furnaces crack bitumen (4 x 1260 bbls/hr @ 940° F)
- Sponge coke used as fuel for our power boilers
Maintenance Challenges

- Overheads from coke drum sent to fractionater
- Fractionater products to respective hydro-processing (Unifiners)
 - Heavy Naphtha
 - Kero
 - Gasoil
 - Frac. Overheads to gas recovery unit
 - Distillate Naphtha and butane to Naphtha-Unifiner

Maintenance Challenges

Challenges
- 12-14 hour cycles
 - All familiar with the sequence;
 - other drum switch complete, steam quench to frac
 - steam quench to steam out, water quench
 - Pull top head, drain drum, pull bottom head
 - Cut drum, head up top & bottom, steam test
 - Vapor heat, switch drum --- ALL IN 12 HOURS!
Maintenance Challenges

• Aging, bulging drums:
 – 4 sets of drums:
 • 3 sets C-1/2 Mo (P3). 405 ss clad, 30 + years old. Shell course thickness 1.000"- 0.750"
 • 1 set 1Cr-1/2Mo (P4). 410 ss clad, 20+ years old. Shell course thickness 0.844"- 0.640"
 • 26' diameter x 94'- 4" high

Maintenance Challenges

• First through wall crack in 1998 in a 30 +year drum
 – Double sided repair +PWHT, no re-cracking
• First through wall crack repair in 2001 in a 20+ year drum
 – Double sided EWI temper-bead,controlled deposition repair without PWHT
Maintenance Challenges

- Major base material build up in 2002 in a P3 30+ year drum
 - Cladding loss due to 885 Embrittlement and thermal fatigue
 - Significant base material loss due to "Sulfidic" corrosion (McConomy)

Maintenance Challenges

- Development of life extension strategies:
 - 2% diametrical growth, 3" local bulge radius
 - Follow up on blunt thermal fatigue cracks "Elephant skin" appearance on cladding
 - LPI and Repair of corrosion fatigue on seams
 - External shear-wave UT at circ. seams
 - Criteria for patch plate repair based on multiple repairs (>2) on same bulge and seam
 - Drum set inspection frequency of two years
 - Laser map-scan as a non intrusive inspection device
 - Single sided repair procedure
Maintenance Challenges

- Cracked Ring Beams
 - Spalling of concrete, exposing re-bar
 - Binding of slide plates
 - Bolt bound, bolt breaking
 - Previous repairs determined to be cosmetic, i.e. repairs not load bearing
 - Longitudinal cracks down length of support
 - Continuously "repairing the repair"
 - Fitness for service and prioritize drums for long term repair strategy
Maintenance Challenges

Aging coker furnace tubes, retirement / replacement strategies
- 4 furnaces, 3 circa '67, 1 circa '80
 - 9Cr-1Mo, 4.5" OD tubes
- 4 pass, 35 year old, cabin style with dividing bridgewall, horizontally fired with 40 premix burners
- 4 pass, 22 year old, two cell box, bottom fired, with a common convection section
Maintenance Challenges
Maintenance Challenges

- Horizontal tubes, hung roof tubes, with clustered refractory brick, no external shell other than rain shield
 - Age deteriorated brick, very difficult to maintain
 - Resulting excess O₂ and furnace draft issues
 - Poor access for roof repairs

Maintenance Challenges

- API 530 analysis only one tool
- Inspection during pigging
- Frequency is temperature driven,
 ~60-70 days
 - In-situ replication
 - UT thickness measurement
 - Visual
 - Tube OD gauging
Maintenance Challenges

- Retirement strategy:
 - Optimum Safety & Reliability, Constructability and Cost criteria
 - Prioritized furnace by condition
 - Phased approach
 - Roof tube replacements more challenging
 - First roof replacement completed
 - Maintain 6 fabricated "U" bends at all times

Maintenance Challenges

- Future developments
 - Convection section retirements
 - Opportunity for comprehensive floor repair
Maintenance Challenges

Coke drum de-heading
- In house hydraulic head removal/carriage
- De-coupled the pneumatic telescopic chute system from the carriage system
 - Reduced chute binding problems
- Slope chutes in need of major refurbishment.
Maintenance Challenges

Maintenance Challenges
Maintenance Challenges

- Coke condensate drum fatigue cracking
 - Condensed hydrocarbon liquid is recovered from drum vapor heat and further stripped to yield feed to coker feed drum
 - Needed for hydraulic reasons.
Maintenance Challenges

- 4 condensate drums 3 circa 67', 1 circa '80
- All drums have experienced cracking
- One drum has had up to 12 separate repairs
- Attributed to thermal fatigue
- Remediation options:
 • Investigating replacement options including partial elimination

Maintenance Challenges of a 30+ year, 8 Drum, Primary Unit Delayed Coker
Maintenance Challenges

Coke cutting system
- Cutting pump 2 x 4” 9 stage Dresser pump 750usgpm@ 3000 psig
- Piping to accommodate dual cutting
- Use of “swing elbows” to switch between drums in a drum set
- Use of “alternate spools” to allow duel cutting
Maintenance Challenges

Coke cutting system (continued)
- 5 drums have double hoses
- 3 drums have a single hose
- 2 drums have hexagonal drill stems
- 2 drums use a turntable

Maintenance Challenges

- Other 6 use the conventional rotary joint assembly by IDP
- Combination pilot and cutting bit
- Failure of any part of the cutting system may result in a loss of a drum cycle (15000 bbls)
Maintenance Challenges
Coke cutting system (continued)
- Use of swivel joints to maintain flexibility of drill hose
 - Was a high maintenance item but upgraded seal material
 - "Swivel elimination" underway
- Rotary table failure requires drill stem to be cut
Maintenance Challenges

Coke cutting system (continued)
Redundant pump pressed into full time service to lower cycle time

- Shaft fatigue failures
 - Modified thrust collar
- Measure wear ring wear for rebuild frequency
Maintenance Challenges

Drill hose failures
- Struggling with a rejection criteria
 - Exposed/corroding reinforcing wire
 - Kinking
 - Bulging
 - Inspection difficulties / access
 - Failures result in missed cycles and lost bbls

Maintenance Challenges

- Rotary joint issues
 - Wash pipe seal ring failures
 - wear
 - exploring more robust materials
 - Lubrication leakage of air motor excessive
 - Evaluating other lubricants and methods

- Goosneck / RotaryTable Bearing failures
 - Loss of clearances, wear age, impact.
Maintenance Challenges

- Future Developments
 - Long term retirement of W-S switch valves
 - Long term rehabilitation of coke drum foundations
 - 12 hour cycles
 - Third coker charge pump (availability)
 - RCM evaluations of charge system. Follow up on coke cutting RCM recommendations
 - Many, many more!

- Achievements:
 - 75% M. A to 92% M.A.
 - Executing critical maintenance and inspections during planned outages.
 - Taking advantage of pigging opportunities for key inspections and maintenance.
 - Executing the right repair on the right equipment at the right time.
 - Focus capital on reliability and availability improvement.