

Why coker heaters? More products

Over firing

©Furnace Improvements (www.heatflux.com)

Typical problems in coker heaters
Run length
Tube metal temperatures
Flame
Arch pressure
FD/ID fans
Oxygen in flue gas
Stack temperature

Coker heater

- Heavy residues for the Coker unit
- Charge heated to the desired (app. 900-935
 °F)
- Coke formation in drums

Coker Heaters

 Endothermic reaction

April 24, 2002

©Furnace Improvements (www.heatflux.com)

©Furnace Improvements (www.heatflux.com)

Limitations on run lengths

- Limiting parameters
- Tube metal temperature
- Pressure drop
- Coke formation

Coke formation Two reasons Heater design Heater operation

- Metal thermal conductivity
 200 -300 Btu/hr ft2 F /inch
- Coke thermal conductivity
 - □ 1-30 Btu/hr ft2 F /inch
- Typically 1/8 inch of coke adds up to 100 F of tube metal temperature rise

Coke formation

- Tube metal temperature
- Pressure drop across heater
- Tube rupture
- Tube sagging, bowing

Coking in tubes

- □ Tube metal temperature
- Pressure drop across the coil
- Firebox temperature
- □ Firing rate
- □ Efficiency
- □ Charge rate
- Shut down the heater and clean the tubes

Monitoring Coking

- Tube skin thermocouples
- Infra-red surveys
- Monitor operation

Good operation vs. run length

- Good Combustion
- Equal flow distribution

©Furnace Improvements (www.heatflux.com)

- Firing rates
- Limiting metal temperatures
- coke formation
- Flames

- Excess air control
- Provide required draft

©Furnace Improvements (www.heatflux.com)

Heater Number	Flowrate, BPD	Inlet temperature, °F	Outlet temperature, ° F
B-1	14,800	756	885
B-2	15,385	765	894
B-3	15,200	769	883

Typical Operating Parameters

Heater Number	Inlet pressure, psig	Outlet pressure, psig	Pressure drop, psi
B-1	300	67	233
B-2	300	59	241
B-3	350	72	278

Good operation

- Control draft
- Control excess O2
- Burner register
- Stack damper

Burners

- Burner sizing
- Flame lengths
- Operation
- FIS can help you select proper burners and ensure that you get the required flame pattern and correct excess oxygen.

April 24, 2002

Improving Reliability of Coker Heaters-Furnace Improvements

Training

- Training of operators
- It pays off big time
- Operating cases
- Furnace Improvements can provide class room and hands on training for your coker heaters

- Coker heater will be coking
- Design basis
- Extend run length
 - On line spalling

On line spalling

- Alternate heating and cooling with steam to spall of the coke from the tube wall.
 - □ Extends the heater run lengths
 - Does not require a shutdown
 - Passes are decoked one at a time
 - Feed cut off
 - Steam introduced
 - Coke is thermally stressed until it breaks
 - □ Goes to coke drums

Tube cleaning during turnaround Steam air decoking Pigging

Steam air decoking

Two step process

Coke spalling

- Shrinking and cracking the coke loose by heating the outside and blowing steam inside
- Coke burning
 - In this process, air is injected with steam and coke burning takes place inside the tube

- Use steam, air and heat to burn out the coke in the tubes.
- Experienced operators are required to perform the decoking.
- Infra-red thermography can help monitor steam air decoking very closely
- Improper procedure can result in overheating of tubes.
- Inexpensive

Pigging
Abrasive pigs can be used to clean tubes mechanically.
Propelling a pig with equipped with steel wires through tubes with water.
The pig is sent back and forth through the tubes and deposits are removed like brushing to clean a surface.

