Furnace Erosion Presentation

- Furnace Process Design
- Furnace Cleaning Methods
- Furnace Erosion and Lessons Learned
- Furnace Outlet Thermowell Location and Lessons Learned

Presenter: Les Osborne

Types Of Coker Furnaces

• Single Fired

Triple Fired

Common Factors For All Furnace Designs:

- Typical Outlet Temperatures 850-950 F.
- Large Fuel Gas Consumers
- Coke Fouling Impacts Performance and Efficiency
- Coke Fouling Requires Periodic Cleaning
- Today's Market Conditions Require Cokers
 To Feed Heavier, High Metal, High Sulfur
 Feeds To Be Profitable
- Erosion affects Safety, Reliability, and Profitability

Furnace Designs

- Mule Ears
 - A) Reliable Design- Erosion Resistant
 - B) Cause High DP Across Furnace
 - C) Subject To Leaking
 - D) Easy To Access Furnace Tubes

• U-Bends

- A) Less Erosion Resistant
- B) Lower DP Across Furnace
- C) Do Not Leak
- D) Cannot Access Furnace Tubes

Current Methods To Remove Coke

- On-Line Cleaning:
 - » A) Spalling With Condensate Injection
 - » B) Spalling With Steam Injection
 - » Advantage- Minimum Feed Interruption
 - »Advantage- Increases Time Between Decokes
 - » Disadvantage- Increased Erosion

Current Methods To Remove Coke

- Off- Line Cleaning

 A) Steam/ Air Decoke
 B) Pigging
 C) Steel Shot Circulation
 - » Advantage- Less Erosion
 » Disadvantage- Usually Requires Outside Contractors
 » Disadvantage- Loss of Feed Throughput During Procedure

Note the severe sooting and build up on furnace tubes

Inside view of firebox

New Lesson Learned Header Box Area

Specific impact erosion zone creates an intense jetting effect

Coke that breaks loose from the tube walls during spalls/ decokes can accelerate to velocities of 200-500 ft/ per second before impacting the ends of the tubes due to the tube lengths in furnaces

Note pocket created by localized erosion

Theory Behind "Flatback" Design

Green Area Denotes "Protective" Liquid Layer That Absorbs Impacts

Erosion has penetrated thermowell

Furnace Outlet Elbows

Typical Outlet Elbow

Stellite Hardfaced Interior

Summary

- Furnace Tube Lifespan:
 - A) Erosion Monitoring
 - B) Creep/ End Of Life Analysis
- U-Bend Design
 - A) Type U-Bends
 - B) Erosion Monitoring

Outlet Thermowell Location

- A) Hardfacing
- B) Relocate to Low Velocity Area
- C) Erosion Monitoring/ Inspection
- Outlet Piping/ Elbows
 - A) Hardfacing
 - B) Metallurgy Research/ Review
 - C) Erosion Monitoring/ Inspection

Conclusions

- In normal furnace operation there is always a certain amount of erosion taking place.
- Spalling/ Decoking Procedures accelerate the erosion processes in the furnace due to the coke on the tube walls being stripped from the tube walls and those coke particles impacting areas downstream.
- Modifying your Spalling or Decoking procedures to reduce velocities can help to slow erosion process.
- Opportunity inspections with non-destructive monitoring techniques such as UT and X-ray can determine erosion rate if baseline thicknesses were taken at beginning of service life.
- Improving furnace design can help control and minimize the erosion rates.