Efficiently reducing SO$_2$ emissions on a smaller plot:
A case study of MECS® DynaWave® technology at CPC Corporation, Taiwan

2-6 October, 2017
Budapest Hungary
Yves Herssens
Increasingly stringent SO₂ emission regulations
Increasingly stringent SO$_2$ emission regulations

USA SO$_2$ NAAQs

SO$_2$ NAAQ (ppb)

- **1 hr**
- **3 hr**
- **24 hr**

- 1971
- 2010
Increasingly stringent SO$_2$ emission regulations

SO2 Air Quality, 1990 - 2015

(Annual 99th Percentile of Daily Max 1-Hour Average)

National Trend based on 140 Sites

1990 to 2015: 81% decrease in National Average
Increasingly stringent SO₂ emission regulations

World Bank Standards aim to match WHO Guidelines
Increasingly stringent \(\text{SO}_2 \) emission regulations

- Government regulations
- World Bank Standards
- Company Policies and Objectives
 - Change Company to Company
- Local Considerations
 - Local Governments
 - Plant Location
 - Public Pressure

Regardless of which drivers are in control for a given installation, the trend for all such drivers seems to be increasingly stringent.
Typical approach to reach SRU emission targets
Typical approach to reach SRU emission targets

We will have our SRUs comply but we want to:

- Minimize CAPEX
- Minimize Maintenance Cost
- Minimize Operator Involvement
- Highest Reliability

Cost of ownership = Purchase + Cost of running + Cost of not running
Typical approach to reach SRU emission targets

Claus process: 96-98% of S recovered

Traditional Method:
Amine Based TGTU: 99.9+% of S recovered

Reliability - emergency shutdowns and startups? Malfunctioning?
If your emission reduction process is not 100% reliable you run the risk that one day you will have to:

- **a.** Shutdown the plant during upset conditions
 - Lost production
 - No additional CAPEX

- **b.** Install a stand-by TGTU
 - No lost production
 - Double the CAPEX
Typical approach to reach SRU emission targets

With the installation of a highly flexible Reverse Jet scrubber, a refinery in Asia, was able to:

- Increase the reliability / higher on-stream time
- Further Minimize CAPEX
- Minimize Maintenance Cost
- Minimize Operator Involvement
- Reduce plot space
Presentation of CPC and the Ta-Lin refinery
CPC Corporation

- Large Taiwanese state-owned refining corporation
- 3 refineries in Taiwan, which had a combined capacity in 2015 of 720,000 bpd:
 - Kaohsiung Refinery – closed end 2015, for environmental reasons.
 - Taoyuan Refinery
 - Talin Refinery
Presentation of CPC and the Talin Refinery

CPC Talin Refinery

- Located in Kaohsiung, Taiwan
- Main products: gasoline and diesel
- Increasing capacity from 300,000 bpsd to 350,000 bpsd
- Total sulfur production capacity of 780 MTPD
 - 3 three-stages Claus Units, 4 trains
 - 1 two-stages Claus Unit (SRU #10), 2 trains
- Improved SO$_2$ removal reliability on SRU #10 simultaneously with capacity increase.
A highly flexible Reverse Jet scrubber
A highly flexible Reverse Jet scrubber

Whatever you do upstream,

at the end, you want to …

Avoid having the mosquito enter your home.

Avoid having the \(\text{SO}_2 \) enter the atmosphere.
A highly flexible Reverse Jet scrubber

Whatever you do upstream, at the end, you want to …

Avoid having the SO$_2$ enter the atmosphere.
A highly flexible Reverse Jet scrubber

The challenges of an SRU/TGTU scrubbing solution:

- Guarantee low SO\textsubscript{2} emissions at all times (no lost production and low CAPEX)
 - Ability to handle a wide range of inlet SO\textsubscript{2} loadings
 - A high turndown required
 - Reliability and proven experience

This opens extra opportunities:

- Potentially save on stack height.
- Operate a more cost-effective SRU/TGTU process, as final SO\textsubscript{2} is captured anyhow before emitting to the stack.
DynaWave® Technology at CPC
DynaWave® Technology at CPC

A little background on the technology

- Developed by DuPont in the 1970s for TiO₂

- Used extensively in harsh environments
 - MECS sulfuric acid plants
 - Incineration tail gas treatment

- Installed and proven experience
 - Over 400 DynaWave installations globally
 - Over 100 Refinery scrubbing references by Dupont Clean Technologies, including several at CPC in the last 10 years.
DynaWave® Technology at CPC

- Custom designed for CPC, based on specific design inlet conditions
- DynaWave technology allows to combine functions all in one vessel:
 - Quench the gas from the WHB
 - Eliminate particulates
 - SO$_2$ to <30ppmv (d)
 - SO$_3$ to <30ppmv (w)
- Additional plume suppression system for visual optimization.
DynaWave® Technology at CPC

DynaWave® Reverse Jet Scrubber

Diagram showing the process of gas and liquid interaction in a reverse jet scrubber, including components such as Dirty Gas In, Clean Gas Out, Path of Gas, Froth Zone, Reverse Jet Nozzle, Reagent, Path of Wet Gas, Path of Liquid, Make-up, Oxidation Air, and Effluent Pump.
DynaWave® Technology at CPC
DynaWave® Technology at CPC
Benefits noted at CPC Talin Refinery
Benefits noted at CPC Talin Refinery

SO₂ emission reduction in *normal operation mode* - above expectations:

- Before DynaWave was installed: 1000 ppmv
- Guaranteed by DynaWave: < 30 ppmv
- Achieved by DynaWave:
 - Train 1: 9.15 ppmv
 - Train 2: 0.23 ppmv

In *bypass operation mode*:

- Before: 7000/8000 ppmv
- After: < 10 ppmv
Benefits noted at CPC Talin Refinery

DynaWave has allowed CPC to operate a more cost-effective TGTU process.

→ Fewer pieces of equipment needed, resulted in a **smaller overall footprint** and significantly less complexity(*).

→ Overall, CPC estimates a **30% TIC savings**(*).

(*) compared to a traditional amine based TGTU.

Additional reliability, compared to a traditional amine based TGTU only.
Benefits noted at CPC Talin Refinery

Little operator attention required:
- Very easy system to operate
- Maintenance free system (unpluggable nozzles)

Guaranteed reduction in SO$_3$ emission in the same process

No visible plume from the stack
Ending remarks
Ending remarks

- Increased reliability: 24/7 low SO\textsubscript{x} emissions
- Significant CAPEX savings
- Minimal operator attention
- Smaller footprint
- No visible plume, which is appreciated by the surrounding community.
Ending remarks

« *If we have the opportunity to use the DynaWave® scrubber technology for other SRU plants in the company’s refining complexes, we will recommend it* »

Mr Jinn-Kuen Lu, head of technical service sub-section at CPC
Ending remarks

SPECIAL THANKS TO:

- Mr Jinn-Kuen Lu, Head of the technical service sub-section, CPC Corporation, Taiwan

- Mr Wei-Chen Ke, No.10 SRU Superintendent at the Ta-Lin refinery of CPC Corporation, Taiwan

- Mr William Lam, Senior Business Development Manager, MECS, Hong Kong