

DETERIORATED SLUICEWAY AT A DELAYED COKING UNIT AND AN INNOVATIVE T/A REPAIR SOLUTION

Repairing the Repair

Background

- Delayed Coker Unit is reported to be 1940's vintage
- Sluiceway directs hot process fluids assisted by high-pressure water jets
- Hydrocarbon based products exceeding boiling point of water

Background

- Type II PC concrete
 Structural Steel Hot Dip Galvanized
 Exposed concrete surfaces intended to be protected with epoxy coating
- Railroad track gage
 width = 56-3/8 in.

Condition Survey

Field Investigation

- Visual Inspection
- Acoustic Impact Testing
- Rebound Hammer Testing
- Sample Extraction

Laboratory Tests

- pH Testing and Carbonation Depth Determination
- Chloride Ion (CI⁻) Content
- Compressive Strength Testing

Field Investigation

Visual Inspection

 Documentation of observed deterioration in the form of cracks, delaminations, spalls, etc.

 Physical measurements for comparison of as-design details

Non-Destructive and Semi-Destructive Testing (NDT & SDF) (techniques provide insight to assemble an accurate assessment

Partial Plan View of Sluiceway

Laboratory Tests

Powder samples

Chloride-Induced Corrosion

Compressive Strength Testing

Orilled core compression test report Certified third party laboratory 6,410 to 8,720 psi
 Based on ACI guidelines, average compressive strength exceeds 9,000 psi

Findings and Recommendations

Deterioration

Cracking
Delamination
Eroded Surfaces
Spalling
Existing Concrete Repairs

Deterioration Mechanisms

Thermal Shock Erosion Corrosion

Railroad Track

- Warped and distorted railroad rail
- Broken and/or missing railroad clips and shims
- Dislodged tie plates with missing or dislodged neoprene bearing pads
- Exposed inverted structural steel channel members due to concrete spalling

Minimize potential for train car derailment by installing spreader bars at regular intervals

Conceptual Repair Schematic

Materials of Construction

Corrosion Resistance Moderate Refractory Properties Concrete Mix Design Toughness Appid "Out-gassing" of Mix Segmental & P-T Construction Sequencing

Pre-T/A Planning & Design

To Implement a **Fast-Track Repair Requires Extensive Preplanning and Incorporation of** Proven Construction Technology

Pre-T/A Planning & Design

The Project Required Rapid **Removal and Replacement of the Existing Sluiceway Within a 28** Day "Window of Opportunity" The Sluiceway was Critical Path for the Majority of the T/A **Schedule**

Pre-T/A Planning & Design

 The Planned Repair Approach was to Perform as Much Work as Possible Prior to the Outage and Then Implement Proven Precast Segmental Concrete Construction Along with Rapid Setting Construction Materials

 Standard Precast
 Concrete Design
 with High
 Performance
 Concrete
 Materials

♦ Use of Metal **Formwork and Inserts Assure** Proper **Alignment of** Construction **Details During** Concrete **Placement**

Using a Calcium **Aluminate Based Cement Concrete with Stainless Steel** Fibers, the **Blocks** were Placed & Consolidated

 Metal Formwork was Stripped Within 1 Day and the Blocks were Stored in a Cool Location W/O Moist Curing Provisions

Demolition of Existing Sluiceway

 Use of Hydraulic Diamond Wire Cutting Equipment to Remove Massive Subsurface Foundations

Demolition of Existing Sluiceway

Low Overhead Clearance Hoe Ram Excavators Were Used to Remove Majority of Sluiceway Concrete

Install New Base Slab for Sluiceway

 Installation of a New Double Mat Reinforced 22-inch Thick Base Slab Overtop a Previously Placed Mud-Mat

Install New Base Slab for Sluiceway

Concrete
 Placement Using
 a High-Early
 Strength
 Concrete Mix
 Conveyed via a
 Concrete Pump
 Truck

Precast 10,500#
 Concrete Block
 Segments
 Placed
 Sequentially
 Using a
 Compact Carry Deck Crane

 Drilling and Installation of PT Grouted Anchors Thru Sleeved Precast Blocks into CIP Structural Base Slab

 Torquing and Stressing PT
 Anchor Rods to
 Spec. To Assure
 Composite
 Behavior
 Between Block
 & Base Slab

Precast Concrete **Segments** Installed and **Prior to Joint** Grouting, Waterproofing and Backfilling

Successful Project Performed Under Budget and 3 Days Ahead of Schedule

