Concrete Repair Strategies For Coking Units

April 19 - 23, 2010
League City, Texas, USA

Bob Hall
bhall@structural.net
847.429.1648
Key Take Aways

- Safety needs to be a core value
- Repairing a Coker Unit is a process
- Understanding deterioration & damage mechanisms is important
- Performing a condition survey is a critical part of the process
- Engineering is also important
- Selecting an experienced contractor is critical to executing a successful project
Safety As A Core Value

◆ Safety First and Always
 - Continuous employee training on everyday safe work practices and specific client safety requirements.
 - Corporate safety culture includes formalized training emphasizing proper safety behavior; a safe, drug-free, and productive work environment. Safety execution plans generated for every project.
 - Employees attend routine safety meetings and training sessions.
 - Contractors should provide training in hazard recognition and safe work practices.
Repairing A Coker Unit Is A Process

- Cause & Effect
 - Defect, Damage or Deterioration
 - Leakage
 - Settlement
 - Deflection
 - Wear
 - Spall
 - Disintegration
 - Crack

- Repair Required?
 - Safety
 - Structural Catastrophe
 - Use Dysfunction
 - Leakage
 - Effects on Environment
 - Aesthetics
 - Preventive Maintenance

- Condition Survey
 - Evaluate
 - Quantify
 - Document
 - Prioritize

- Repair Analysis
 - Owner Criteria
 - Urgency
 - Cost
 - Expectations
 - Useful life
 - Aesthetics
 - Engineering & Contractor Issues
 - Structural Req.
 - Effect
 - Constructability
 - Environment
 - Safety

- Repair Strategy
 - Contractor Methods
 - Surface Repair
 - Stabilization
 - Strengthening
 - Waterproofing
 - Protection
 - Techniques
 - Materials

Repair
Structure Elements Of Interest Within Coking Units

- Anchorages
- Octagonal Penetrations
- Columns / Beams
- Switch Deck
- Head Deck
- Coke Pit, Coke Pad, Sluiceway
Deterioration & Damage Mechanisms In Coker Units

- Elevated temperatures
- Mass concrete shrinkage
- Dynamic loading
- Impact damage
- Fire damage
- Corrosion-induced deterioration
- Failed patch repairs
- Bucket 5mpact
- Dynamic, soil & hydrostatic loads

Octagon Wall
Temperature Readings

Temperature Readings

Higher Temperatures

Lower Temperatures

Heat

308°F

273°F

160°F

Thermocouple Thermometer Readings

Measured Temperatures On Octagon Faces
Microcracking of Cover Concrete

- Desiccated Cover Concrete
- Moisture Stable Concrete
Fire Damage

- Aggregate swells
- H₂O to steam
- Chemical alteration to concrete matrix
Factors Leading To Corrosion Within A Coker Unit

- Cast-in-chlorides
- Air-borne chlorides
- High temperature
- Moist/wet conditions inherent to process
- Shortcut access of elements through cracks
- High concentration of CO$_2$
Critical Unit Event Scenarios

- Dynamic & vibration
- Process loading
- Explosion/fire
- Hurricane/tornado
- High winds
- Earthquake
Condition Survey

- Field Investigation
 - Visual Inspection - Site Survey
 - Acoustic Impact Testing
 - Rebound Hammer Testing
 - Ferroscan Pachometer Survey
 - Ultrasonic Testing
 - Impact-Echo Testing
 - Ground Penetrating Radar
 - Sample Extraction

- Laboratory Tests
 - pH Testing and Carbonation Depth Determination
 - Chloride Ion Content
 - Compressive Strength Testing
 - ASR Testing via Uraynal Acetate Reagent
Condition Survey

Evaluate, Quantify, Document, Prioritize
Chloride-Induced Corrosion

- Oxygen, chlorides, moisture

Crack
Carbonation-Induced Corrosion

Carbon dioxide + moisture → pH decreases

pH 13 → pH 10 → pH 10

Corrosion occurs
Fast-Track & Turn-Key Opportunity

- Condition evaluation, site presentation & order of magnitude repair costs
- Engineering
- Repair & rehabilitation
- On line and/or turnaround repairs
- Quality assurance & quality control
Special Considerations For Coker Unit Repairs

- Determine need for shoring
- Corrosion protection: use of sacrificial discreet anodes
- Mechanical anchorage of substrate and repair material
Engineered Coke Support
Structure Shoring Plan
Finite Element Analysis
Coke Pit Panel Lining And Wall Extension Concept

Section A A
REPAIR STRATEGIES:

Repair-In-Kind
Engineered Repairs

Before

During

After
Octagon Wall Repair

Before

During

After
Sluiceway Repair

Before

During

After
Fireproofing

Before

During

After
Coke Pit Wall

Before

After
COKER REPAIR SPECIALISTS: Build Synergistic Team

- Refinery Operations
- Contractor Operations
- Turnaround Planning
- Engineering Design
- Project Management
COKER REPAIR SPECIALISTS:
Dedicated Crews
COKER REPAIR SPECIALISTS:

Vast Experience

Chevron
ExxonMobil
ConocoPhillips
Suncor Energy
Motiva Enterprises LLC
BP
CITGO
Coffeyville Resources
Valero Energy Corporation
Questions ?