CONCRETE FIREPROOFING ANALYSIS, EVALUATION AND REPAIR STRATEGIES

April 12 - 16, 2010 League City, Texas, USA

CatCracking.com

281.479.0391

MORE PRODUCTION - LESS RISK!

Thomas R. Kline

tkline@structural.net

Picture Courtesy of Refinery Terminal Fire Company (RTFC)

Fireproofing Purpose

 Maintaining structural stability and integrity of steel members and vessel/pipe supports for a defined period of time when exposed to a fire

Picture Courtesy of Refinery Terminal Fire Company (RTFC)

Fireproofing Basics

Material minimum thickness

Restrict heat transfer rate

Protected element

Acceptable steel core temperature at the end of fire exposure to avoid collapse/buckling

Comparison of Typical 'Hydrocarbon' and 'Cellulose' Time-Temperature Curves

Effect Of Temperature On Strength Of Structural Steel

Fire And Explosion Behavior

- Resistance to thermal and erosive forces
- Surface temperature of substrate
- Non-combustible
- Withstand effects of explosion and subsequent drag pressures

Picture Courtesy of Refinery Terminal Fire Company (RTFC)

Pre-Fire Durability

- Weather cycling and chemical tolerance
- Vapor permeability and low porosity
- Vibration resistance compressive, tensile and flexural strength
- Hardness value and impact resistance
- Abrasion and erosion resistance
- Bonding strength
- Wash-down resistance

Passive Fireproofing Materials

- Heat absorbers
- Hard and durable
- Economic
- Easy to install and repair
- React under fire and emit gases
- Form a low density carbonaceous char
- Can provide thermal insulation
- Absorb water
- Indoor applications
- Sandwich of metallic cladding, cementitious board, and mineral or ceramic fibers
- Not economically feasible

Cementitious Concrete Materials

- Made with Portland cement or modified fireresistant cements
- Specific weights
 - Dense concrete 140 to 150 lb./ft³
 - Lightweight concrete 25 to 80 lb./ft³
- Thermal conductivity tends to be inversely proportional to specific weight
- Capable of withstanding direct flame impingement up to 2000° F (1100° C)
- Alkaline passive film protects the embedded steel

Intumescent Epoxy Coatings

- Intumescent coatings react to flame or heat at around 300° Fahrenheit (149° C) by expanding into a thick multicellular insulating blanket. This intumescent carbonaceous foam sharply limits the spread of flame and insulates the steel.
- Washable, aesthetically pleasing, mark resistant surface like traditional paint
- Provide protection from corrosion
- Require expertise in application and controlled conditions
- Comparatively higher cost to cementitious materials

Fireproofing Rating

<u>A function of:</u>

Time and ease of evacuation
Fire hazard posed by substance
Fire suppression capabilities

2 inches (50 mm) of cementitious products will provide a 2-hour rating (BS476 & ASTM E-119)

Concrete Fireproofing In Processing Units

Multilevel Equipment Structures

Pipe Racks

Fireproofing Deterioration

Embedded Structural Steel Corrosion Exposed During Fireproofing Inspection Process Rust Stains Emerging From Fireproofing Indicating Early Evidence Of Steel Member Corrosion

Failed Fireproofing Due To Embedded Structural Steel Member Corrosion

Fireproofing Deterioration Mechanism (cont.)

Structural Steel Beam/Column

> Preformed Inorganic Panel Fireproofing

Corrosion Products Open Areas Within The "Boxed" Structural Member Fills With Moisture And Promotes Corrosion

Fireproofing Deterioration Mechanism (cont.)

PIPELINE

Condition Survey And Evaluation

- Assess the condition of concrete fireproofing
- Evaluate causes of concrete/steel distress
- Provide conceptual repair recommendations

Need For Fireproofing Restoration

Safety

- Possible structural collapse
- Reduced fire protection/lower expected performance
- Personnel at risk due to falling debris
- Insurance costs
- Aesthetics of damaged/falling fireproofing

Excavation Geometry

Ultrasonic Thickness Measurements

- Ultrasonic Thickness
 Meter
- Structural steel pipes, webs and beams flanges
- Access one side of steel member

Measurement Analysis

Conceptual Fireproofing Repair

- Assemble scaffolding for elevated regions of distressed fireproofing
- Remove deteriorated concrete fireproofing and wire mesh avoiding damage to structural steel members
- Clean exposed embedded structural steel members of corrosion products
- Inspect members and connections for structural integrity
- Coat exposed structural steel section

Fireproofing Repair (Cont.)

- Install wire mesh
- Assemble mortar-tight cavity formwork
- Re-establish the cementitious fireproofing section by using "form and pour" placement techniques
- Remove formwork after curing period and surface grind cementitious repairs to match original fireproofing surface contours

Valuable Repair Aspects

- Turnkey investigation
- Attention to details
- Budgeting capabilities
- Corrosion protection to steel
- Production rates
- Adjustable crew size with qualified personnel
- High quality repair materials
- Observe standard industry practices