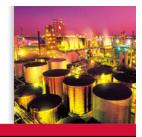


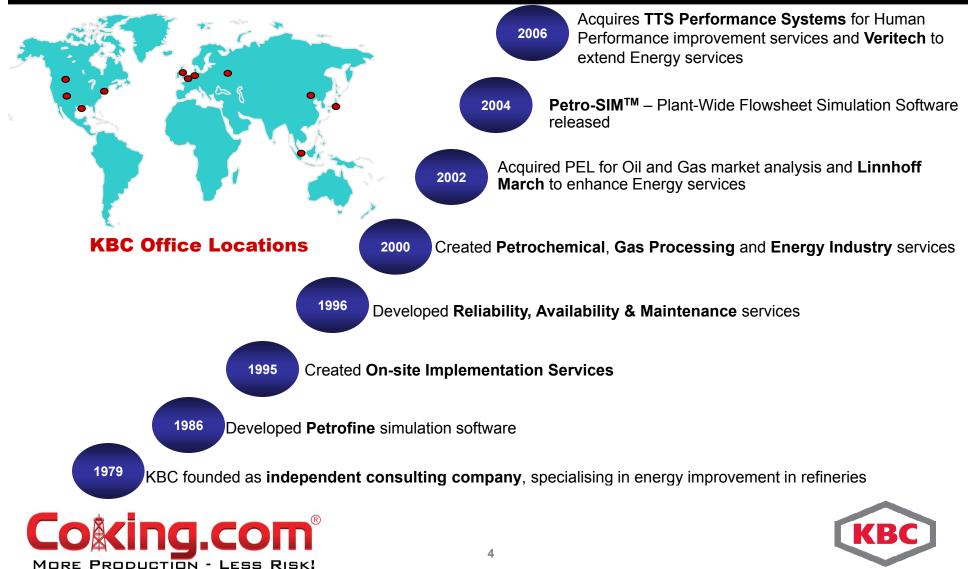
Coker Heater Design and Evaluation

© 2007 KBC Advanced Technologies plc. All Rights Reserved.

- Heater often unit limit
- Coker often refinery limit
 - -Refinery throughput
 - -Refinery crude slate
- Getting more from heater can be very valuable
- Refiner will look to optimize or revamp the heater
 - In house heater evaluation may be beyond refinery capability
 - -Refiner may need to utilize third party engineering

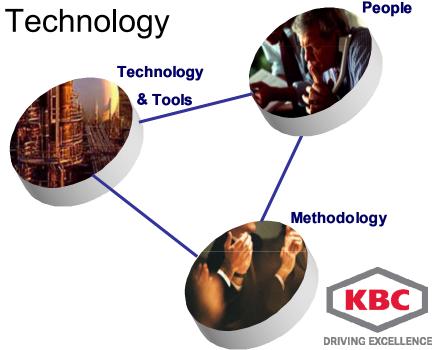


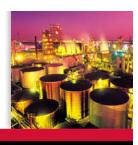
- Coker heater unique in refinery
 - -Reactor coil
 - -Worst feeds
 - -Shortest run lengths
- Unique properties make coker heater evaluation complexity
- KBC to outline how we handle the unique features
- Reference point for when heater revamp becomes refinery goal



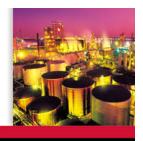
KBC Background

DRIVING EXCELLENCE

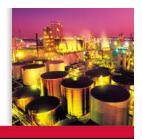



What We Do

- Provide Independent, Objective Advice
- Enhance Capital & Asset Effectiveness
- Improve Operational Performance
- Increase Competitive Advantage
- Meet Individual Client Needs with Consulting + Implementation + Technology

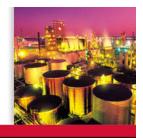

5

KBC Background in Coking

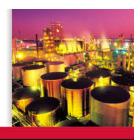


- Have performed operations reviews/profit improvement evaluations on over 60 cokers, in over 50 sites, representing over 1.5 MM BPD of coking capacity.
- Over course of last three years, participated in licensor selection process on 10 grass-roots cokers

Design/Revamp Challenges

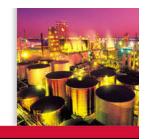


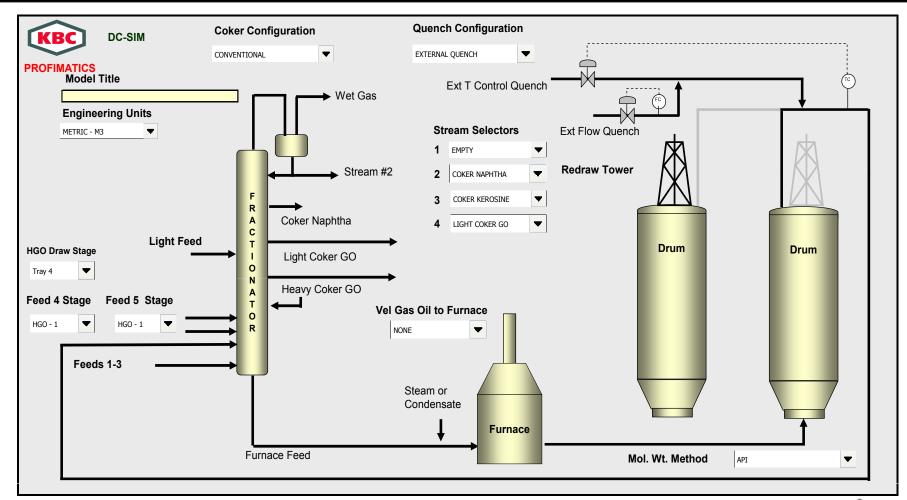
- Actual inlet stream to the heater probably unknown
- Modeling heater for potential revamp not straightforward
 - Outlet stream is not inlet stream
 - Different composition
 - Different physical and thermal properties


How do you?

- Characterize the feed to the heater?
- Account for the reaction occurring within the coil?
- Project the impact of process/heater configuration changes on heater run length?
- Assess impact of feed quality changes?

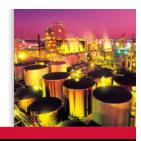
- Defining the recycle feed to heater
 - Generate recycle stream in kinetic model
 - KBC uses DC-SIM
 - DC-SIM can generate both recycle and heater feed streams
 - Generate recycle stream by heat and material balance around column flash zone
 - DC-SIM can be imbedded into PetroSIM flowsheet



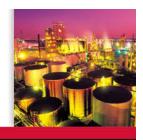


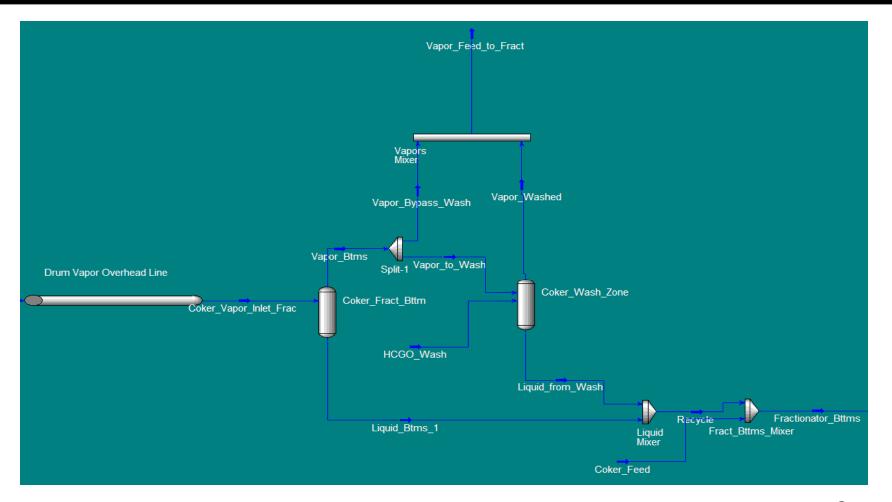
DC-SIM Overview Page

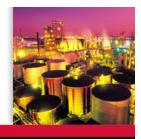
Coking.com


More Production - Less Risk!

DC-SIM Tower Bottoms




	А	С	D	E	F
323	-Tower Bottom Mass Rate	lb/hr			410315
324	-Tower Bottom Volume Rate	bbl/d			26212
325	-Tower Bottom Temperature	°F			584
326	-Tower Bottom API Gravity	°API			0.52
327	-Tower Bottom Specific Gravity	60/60 deg F			1.0718
328	-Tower Bottom Sulfur	wt %			5.1115
329	-Tower Bottom Nitrogen	wt %			0.5191
330	-Tower Bottom ConCarbon	wt %			29.68
331	-Tower Bottom Metals	ppmwt			789
332	-Tower Bottom TBP 00% Point	°F			600.3
333	-Tower Bottom TBP 10% Point	°F			1049.1
334	-Tower Bottom TBP 30% Point	°F			1183.4
335	-Tower Bottom TBP 50% Point	°F			1283.9
336	-Tower Bottom TBP 70% Point	°F			1404.0
337	-Tower Bottom TBP 90% Point	°F			1522.1
338	-Tower Bottom TBP 99% Point	°F			1584.8
339	-Tower Bottom K-Factor				11.27
340	-Tower Bottom Mol Wt				754


Coker Flash Zone H&MB

- Defining oil through the heater
 - Requires understanding conversion through the heater
 - KBC uses VIS-SIM
 - Tube by tube kinetic visbreaker model for heater process side
 - As coker heater, reaction tuning factors typically left at default values
 - Performs reaction and pressure drop calculations

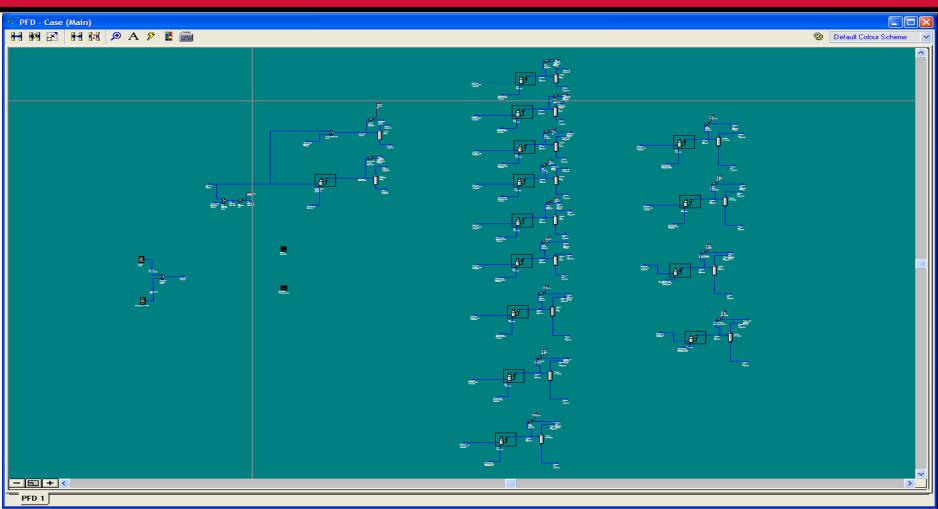
KBC VIS-SIM

Design		Outside Diam	Thickness		Length	Coke Thickness	Spacing	
Connections	_	[ft]	[ft]	Pass	[ft]	[ft]	[ft]	Header K-Value:
	1	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
ube Data	2	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
ser Variables	3	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
otes	4	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	5	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	6	0.3333]	2.650e-002	4.000	32.92	0.0000	0.5833	
	7	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	8	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	9	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	10	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	11	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	12	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	13	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	14	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	15	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	16	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	17	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	18	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	19	0.3333	2.650e-002	4.000	32.92	0.0000	0.5833	
	20	0.3333	2.650e-002	4.000	32.00	0.0000	3.500	
	21	0.3333	2.650e-002	4.000	15.00	0.0000	0.5833	
	22	0.3333	2.650e-002	4.000	2.000	0.0000	0.5833	
	23	0.3333	2.650e-002	4.000	2.000	0.0000	0.5833	
	24	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	25	0.0000	2.650e-002	4.000	35.00	0.0000	0.5833	
	26	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	27	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	28	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	29	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	30	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	31	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	32	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	33	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	34	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	35	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	36	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	37	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	38	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	39	0.3333	2.650e-002	4.000	35.00	0.0000	0.5833	
	40	0.3333	2.650e-002	4.000	3.000	0.0000	0.5833	
	41	0.3333	2.650e-002	4.000	3.000	0.0000	0.5833	

Delete

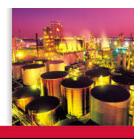
Ignored

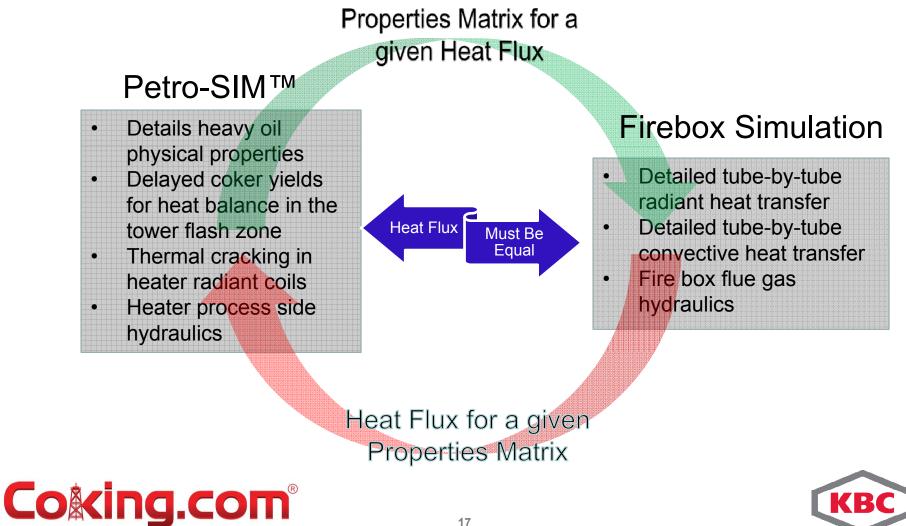
KBC VIS-SIM Heater Profile

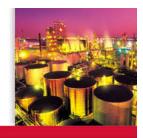

🔯 Anonymous Coker Heater

Results		Fluid P	Fluid T	Oil Film T	LV% Vaporised	Fluid Velocity	Sonic Velocity	Residence Time
Operating Summary		[psig]	[F]	[F]	[vol %]	[ft/s]	[ft/s]	[seconds]
Detailed Tube Profil	Outlet 1	64.00	915.0	962.4	10.27	50.92	775.7	0.681
Tube Specifications	Outlet 2	66.88	907.6	958.1	8.498	45.71	809.0	0.760
Coil T And P Profile	Outlet 3	70.57	899.8	953.5	6.901	40.83	849.5	0.846
Fluid Properties	Outlet 4	73.87	891.8	948.5	5.586	36.94	893.9	0.930
Two Phase Regime	Outlet 5	76.85	883.7	943.1	4.514	33.83	941.8	1.01
Mass Bal Summary	Outlet 6	79.59	875.4	937.4	3.647	31.32	992.5	1.08
Residue Properties	Outlet 7	82.14	867.1	931.5	2.949	29.28	1045	1.15
	Outlet 8	84.52	858.1	924.7	2.382	27.59	1101	1.22
Conversion Summary	Outlet 9	86.77	850.2	918.8	1.947	26.24	1154	1.28
Viscosity Summary	Outlet 10	88.92	841.2	911.8	1.585	25.07	1208	1.33
P Drop Summary	Outlet 11	90.98	833.0	905.4	1.318	24.12	1255	1.38
Diagnostics	Outlet 12	92.97	824.0	898.1	1.084	23.31	1306	1.44
Residence Time Graph	Outlet 13	94.90	801.8	878.0	0.5938	22.12	1451	1.50
Horizontal Flow Graph	Outlet 14	96.80	792.8	870.4	0.5319	21.65	1476	1.53
Vertical Flow Graph	Outlet 15	98.67	784.5	863.5	0.4794	21.23	1498	1.56
	Outlet 16	100.5	775.5	856.0	0.4289	20.79	1519	1.59
	Outlet 17	102.3	766.5	848.6	0.3836	20.39	1539	1.62
	Outlet 18	104.1	757.5	841.2	0.3427	20.01	1557	1.66
	Outlet 19	105.9	748.5	833.8	0.3060	19.65	1574	1.69
	Outlet 20	107.6	739.5	826.5	0.2729	19.30	1589	1.67
	Outlet 21	109.7	732.2	732.2		6.121		2.45
	Outlet 22	110.1	732.2	732.2		6.121		0.326
	Outlet 23	110.2	732.2	732.2		6.121		0.326
	Outlet 24	110.3	732.2	765.6		6.121		5.72
	Outlet 25	110.9	728.6	761.5		6.108		5.73
	Outlet 26	111.5	725.1	751.0		6.095		5.74
	Outlet 27	112.0	722.4	748.3		6.086		5.75
	Outlet 28	112.6	719.6	777.8		6.076		5.77
	Outlet 29	113.2	713.4	772.7		6.054		5.79
	Outlet 30	113.8	707.1	750.8		6.032		5.81
	Outlet 31	114.3	702.5	746.8		6.016		5.82
	Outlet 32	114.9	697.8	730.7		6.000		5.83
	Outlet 33	115.5	694.4	727.9		5.988		5.85
	Outlet 34	116.0	690.9	716.0		5.976		5.86
	Outlet 35	116.6	688.2	713.8		5.968		5.86
	Outlet 36	117.2	685.6	704.8		5.959		5.87
	Outlet 37	117.7	683.6	703.2		5.952		5.88
	Outlet 38	118.3	681.6	696.5		5.945		5.89
	Outlet 39	118.9	680.0	695.2		5.940		5.89
	Outlet 40	119.4	678.5	678.5		5.935		0.505
	Outlet 41	119.6	678.5	736.8		5.935		0.505
	Inlet 41	119.8	678.0	736.4		5.933		
	<							

Generating Fluid Properties

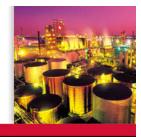




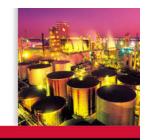

Solving Overall Furnace

More Production - Less Risk

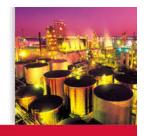
DRIVING EXCELLENCE



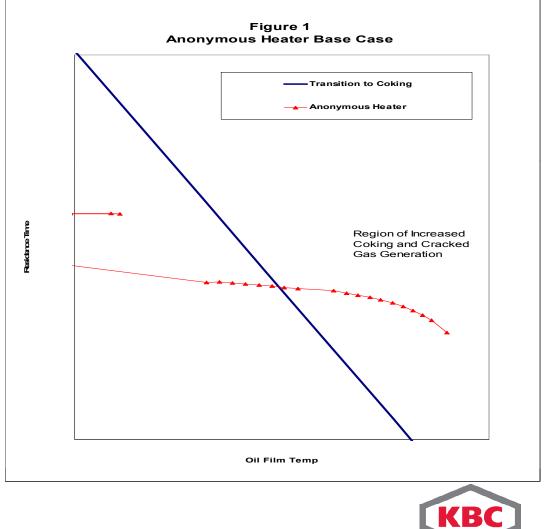
- PetroSIM used to generate:
 - Liquid and vapor properties of coil fluid
 - % vapor, densities, heat capacities, thermal conductivities, viscosities, surface tension
 - Properties transferred to commercial firebox simulator via property grid input
- Commercial firebox simulation used to generate heat fluxes, transferred to VIS-SIM
- Models run iteratively until no change in fluxes

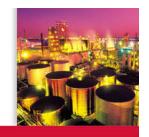


- Once the base case model developed, can be used to evaluate
 - Velocity steam strategy
 - Quantity, injection location
 - Heater configuration
 - Tube diameter, tube length, number of tubes
 - Other operating variables
 - Feed changes, light recycle, etc

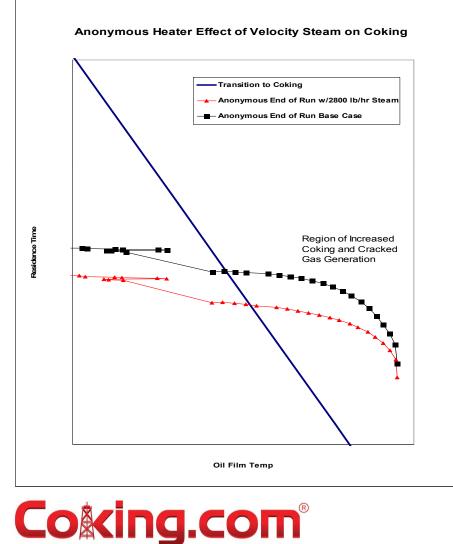


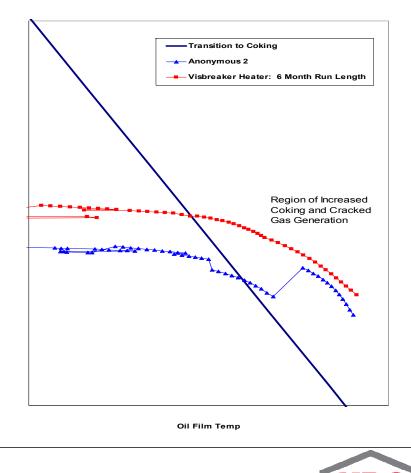
- Addressing changes in heater fouling
 - Coking tendency
 - Performance versus KBC coking curve
 - Projected run length
 - Using KBC coking rate equation
 - Feed quality impacts
 - Evaluating potential for asphaltene precipitation in the coil




DRIVING EXCELLENCE

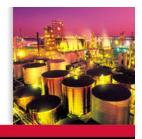
Coking Tendency: Coking Curve


- From series of heavy oil heater analyses, KBC developed coking correlation between residence time and film T
- In "anonymous" heater, 13 tubes operating on coking side of coking curve



Coking Tendency: Examples

More Production - Less Risk!

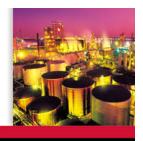


Effect of Tube Diameter Increase on Coking Tendency

Residence Time

KBC Coking Rate Calculation

From the coking curve, KBC derived coking rate equation


• Form of the Arrhenius equation:

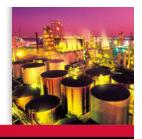
(Base T – Case T) * (Case Time / Base Time)

Asphaltene Precipitation

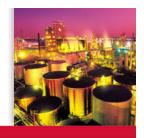
- KBC has developed physical property called Aromatic Blending Number (ABN)
- ABN is a function of BMCI (Bureau of Mines Correlation Index

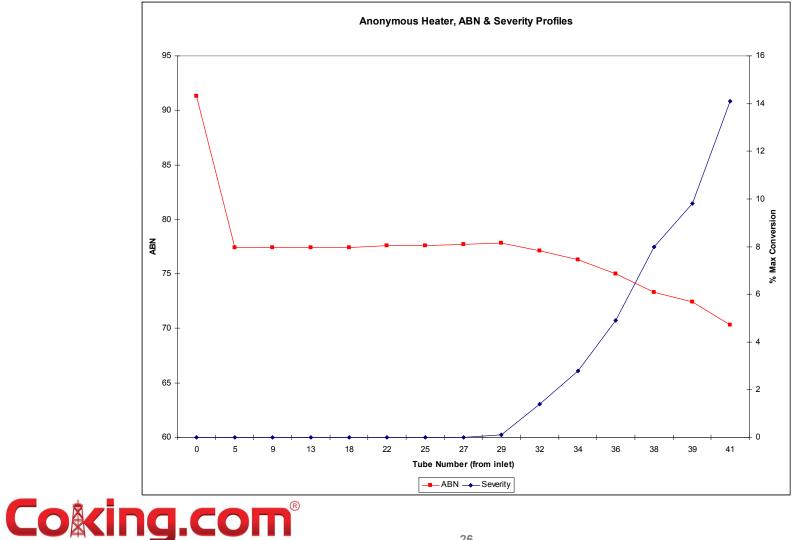
 $EMCI = 473.7SG + \frac{87552}{ABP} - 456.8$

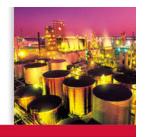
where:


BMCI = calculated BMCI value SG = SO of stream ABP = Me ABP pf stream, °R.

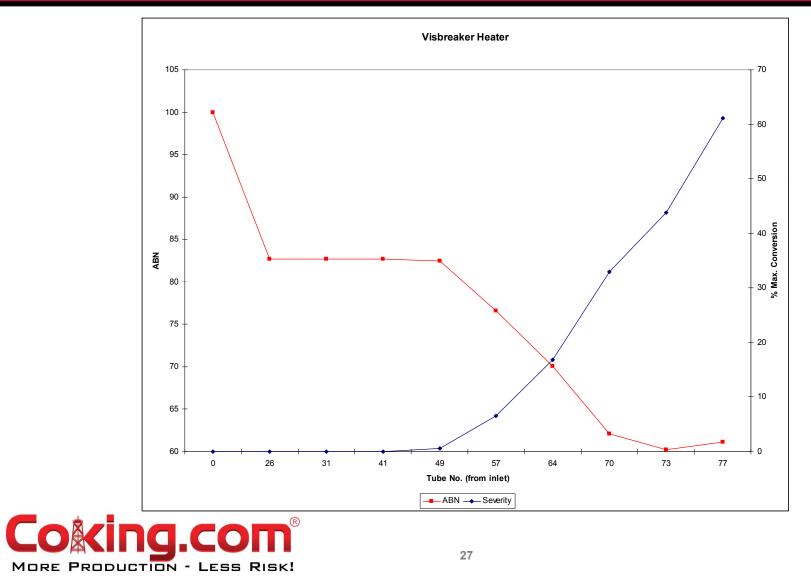
- ABN is a primary indicator of oil stability & oil's capability as asphaltene solvent
- For streams with asphaltenes, ABN = 40 times p-value (or p-value = ABN/40)

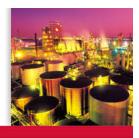

Heater Cracking Severity


- As part of visbreaker modeling technology KBC has developed physical property called Maximum Visbreaker Conversion
- Maximum visbreaker conversion a function of asphaltenes and BMCI (Bureau of Mines Correlation Index)
- Maximum visbreaker conversion is the 400- conversion at which the visbroken pitch product reaches minimum stability target
- Heater severity is the conversion/maximum visbreaker conversion

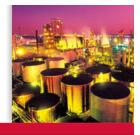


Tracking ABN and Heater Severity




More Production - Less Risk!

ABN and Heater Severity (2)



- Feed characterization
 - How is recycle accounted for/characterized?
- Oil characterization through coil
 How is change of composition addressed?
- How are run length projections made?
- How are effects of feed quality changes assessed?

KBC Contact Information

- Steve Hyde
 - shyde@kbcat.com
- Sim Romero
 - sromero@kbcat.com

