

Assessment of Bulging Severity

Mahmod Samman, Ph.D., P.E. Stress Engineering Services, Inc. & Pierre Du Plessis, PEng Suncor Energy Inc.

Coking.com Coke Drum Workshop Calgary, Alberta September 2009

OVERVIEW

BackgroundPlant ExperienceQ&A

BACKGROUND

- > Why does bulging occur?
- > What are the consequences of bulging?
- > Bulging magnitude versus cracking severity
- > The Bulging Intensity Factor (BIF)

Why Does Bulging Occur?

Resistance of coke

(high nominal stresses)

Material / thickness mismatch

(mechanical ratchet or progressive distortion)

> Operation

(cycle time, switch temperature, feed rate, ..)

Flow patterns inside drums (cold / hot spots)

What are the consequences of Bulging?

What are the consequences of Bulging?

What are the consequences of Bulging?

Bulging Magnitude vs. Cracking Severity

Can we use API-579 Assessment?

Sure! Level 3 Assessment only

(plastic collapse, local failure, buckling, and fatigue analyses)

Requirements

- (1) quantify both mechanical and thermal loads,
- (2) simulate how these bulges were formed to account for residual stresses and plastic deformation in bulges (nonlinear model),
- (3) use continuum elements to capture stress fields at sharp bulges,
- (4) evaluate crack stability or growth if any exist or likely to form, and
- (5) incorporate creep damage effects for Carbon steel drums.

Problems

- ✓ <u>Cost</u>: A strain-gage monitoring system, a nonlinear continuum model, and a LOT of labor and computer time can cost \$ ½ to 1 M
- ✓ <u>Feasibility</u>: Requirement (2) above may not be achievable!

TOOL DEVELOPMENT

Slicing the Bulge

Circumferential profile

Longitudinal profile

Geometric Parameters

The Bulging Intensity Factor (BIF)

From laser scans:

Identify and Rank areas most susceptible to cracking

Prioritize & optimize inspections

Coking.com

BULGING INTENSITY FACTOR (BIF)

Alloy Drums

BIF	External Cracking Likelihood	Internal Cracking Likelihood					
≥+2	SEVERE (End of Economic Life)						
+1.5 to +2		Very High					
+1 to +1.5		High					
+0.75 to +1		Medium					
0 to +0.75		Low					
0 to -0.75	Low						
-0.75 to -1	Medium						
-1 to -1.5	High						
-1.5 to -2	Very High						
<u>≤-2</u>	SEVERE (End of Economic Life)						

BULGING INTENSITY FACTOR (BIF)

Carbon steel

BIF	External Cracking Likelihood	Internal Cracking Likelihood					
≥+2.5	SEVERE (End of Economic Life)						
+2 to +2.5		Very High					
+1.5 to +2		High					
+1 to +1.5		Medium					
0 to +1		Low					
0 to -1	Low						
-1 to -1.5	Medium						
-1.5 to -2	High						
-2 to -2.5	Very High						
≤-2.5	SEVERE (End of Economic Life)						

BULGING INTENSITY FACTOR (BIF)

SEVERITY IMPLICATIONS

Severity Grade	Cracking Pattern	Recommended Laser
	Related to Bulging	Scanning Frequency
Low	Rare	Every 3 years
Medium	Seldom	Every 2 years
High	Occasional	Every 1 year
Very High	Repeated	Every 1 year
SEVERE	Too frequent	Consider partial or full
	to operate economically	shell replacement

- Calibration data base: 11 drums with known cracking histories.
- Total data base: 80+ scans.
- Carbon steel, Carbon-1/2Mo and 1 to 1¹/₄
 Chrome drums.

Age versus BIF

(Age shown does not account for any repairs or can replacements)

Maximum thickness versus BIF

Minimum thickness versus BIF

Coking.com

Diameter over Minimum Thickness versus BIF

BIF Output

- Two-dimensional color contour plots
- Three-dimensional surface maps
- Ranking of most severe locations
- Multiple scans:
 - Statistical analysis
 - Growth rate analysis
 - Future cracking projections

Coking.com[®]

0.1

-0.3 -0.4 -0.5 -0.6

-0.7

Case Study (1)

Case Study (2)

Case Study (2)

Summary

- The Bulging Intensity Factor (BIF) is a geometrybased technique for assessing the severity of coke drum bulges
- The method is designed to help in:
 - Planning maintenance outages, repairs, and replacement
 - Determining the frequency of laser scans
 - Quantifying the risk of failure
 - Prioritizing inspections and optimizing resource allocations
- So far, predictions seem to correlate well with cracking history

SUNCOR COKE DRUMS (14)

Suncor Portion of this presentation is compiled with the contributions received from Projects, Reliability, Process and Operations Group. Special Thanks to : Vrajesh Shah - Sustainable Projects, Charles Stephens & Aaron Johnson - Reliability Engineering

OBJECTIVES

- How severe is the Bulging in the Drums ?
- How should we prioritize the drum inspection needs?
- When will the bulging result in Cracking ?
- When should we replace the coke drums?
- How soon do we need to rescan the drum ?
- How to minimize unplanned outages ?
- What will be the total crack repair cost 5 to 10 years from now ?

Evaluation Techniques

- Laser scans
- Bulge Severity and Growth Analysis using Bulging Intensity Factor (BIF)
- Software analysis in house
- Finite Element Analysis
- Probabilistic Crack Propagation calculations
- Strain Gage & temperature Measurements
- AET (Acoustic Emission Testing)
- Shear wave UT

BIF RESULTS – ALL DRUMS

DRUM	Maximum BIF and severity ranking					Severity of last scan	Deterio ration speed	Notable areas		
	1996	2000	2002	2004	2005	2007	2008			
5C3			0.66 ~0.73			0.76~ 0.66		Marginally Medium	Slow	South side of the fifth can
5C4			0.58 ~0.71		0.76 ~0.76		0.61 ~0.56	Low	None	South side of the fourth can
5C5			0.77 ~0.61					Medium	Mild	Circumferential weld between the fourth and fifth cans and south side of the fifth can
5C6	1.66 ~0.92	1.59 ~1.0	1.62 ~1.08	1.82 ~1.10				Very high	Fast	Northeast side of the middle of the third can and the bottom of the fifth can
5C7	0.68 ~0.75				0.46 ~0.71			Low	None	None
5C8	0.68 ~0.89				0.77 ~0.60	0.75 ~0.64		Marginally Medium	None	North side of sixth can
5C50	1.06 ~0.64	1.10 ~0.67		1.14 ~0.69				High	Mild	Bottom of the fifth can
5C51				1.10 ~0.73				High	N/A	Bottom of the fifth can

BIF Results

Suncor used SES's BIF to evaluate bulge severity of the drum surface. Result were intended as a guide to rank bulges for inspection priority as a function of their likelihood to encourage cracking.

Rank	BIF	Zone	severity	-
1	1.82	А	very high	700
2	1.54	А	very high	700-
3	1.49	В	high	
4	1.23	А	high	600-
5	1.19	А	high	
6	1.12	А	high	500-
7	1.10	В	high	~
8	1.06	В	high	t (in
9	1.03	А	high	년 400- [] []
10	0.94	В	medium	Ť
11	0.93	E	medium	300-
12	0.91	В	medium	-
13	0.85	В	medium	200-
14	0.84	С	medium	
15	0.83	В	medium	
16	0.83	С	medium	100-
17	0.80	D	medium	
18	0.79	В	medium	0-
19	0.78	В	medium	
20	0.76	В	medium	

BIF Bulge Severity Prediction for likelihood of Cracking

CONCLUSIONS

 Suncor used this technique along with other available tools to make future predictions of drum inspection needs and projected life

- •The BIF is used for identifying and ranking the most severe locations on a drum and finding cracks before they go through wall
- Suncor's experience shows that the BIF correlates well with actual cracking history

Questions?

Mahmod Samman, Ph.D., P.E.

Stress Engineering Services, Inc.

mms@stress.com

281-955-2900

Pierre Du Plessis, PEng

Suncor Energy Inc.

PDuPlessis@Suncor.com

