ANALYSIS OF COKE DRUM CRACKING FAILURE MECHANISMS &
COMMENTS ON SOME PUBLISHED RESULTS

Conference
Calgary, Alberta
14 – 17 Sep 2009

J Aumuller, P. Eng.

Z Xia, Ph.D., P. Eng.
• Why stress determination
 • vessel bulging and cracking attributable to mechanical mechanism rather than metallurgical
 • primary mechanical failure mechanism is
 → low cycle thermal strain cycling

• What are
 • the various loadings
 • their nature
 • contribution to the proposed failure mechanism
• Major loadings identified

 • pressure, live weight, dead weight
 • pressure is nominally constant over operating cycle - cyclic
 • live weight load from bitumen feed, quench water - cyclic
 • dead weight load is constant

 • mechanical load due to coke crushing
 • as drum contracts, load due to restraint created by solid coke
 residual mass – cyclic, global

 • temperature load due to varying temperature of incoming
 streams – cyclic, variable, global & localized

 ➔ appears to be most damaging load mechanism ➔
• Contribution to failure
 • pressure, live weight, dead weight
 • not likely due to design stresses well within elastic region, no evidence that stresses exceed elastic

 • mechanical load due to coke crushing
 • feasible load, but not sufficiently severe
 • laser scan results do not generally support this mechanism
 • incremental distortion not evident

• temperature load due to varying temperatures of incoming streams – cyclic, variable, global & localized aspects during operational cycle
→ magnitude & distribution consistent with nature of failures
• Character of temperature loading is complex

 • variation and variability in fluid stream temperatures & impacts on drum metal temperature [DMT]
 • vapor heat [~ 550 °F], nominally causes uniform rise in DMT; however, vapour heat temperature can vary widely per operator intervention – can go directly from steam to oil-in step → thermal shock

 • oil-in [~ 750 °F to 900 °F], nominally causes uniform rise in DMT
 • as bitumen solidifies and cools, uniform effects give way to localized effects
• Character of temperature loading is complex [cont’d]

• water quench [~ 250 °F]
 • extreme thermal shock imposed on DMT
 • ~ 850 °F → 250 °F - oil-in & water quench temperatures
 • highly variable DMT due to flow channeling imposing hot & cold spots upon the drum shell that are also time variable, i.e. \(T = T(x, y, z, t) \) or \(T(\theta, z, t) \)

→ **highest potential impact on shell structural integrity**
Shell OD Strain - Measured

-200
0
200
400
600
800
1000
1200

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

strain in [ue]

0
200
400
600
800

Vapor heat

Oil in

Steam test

Water quench

time in [hours]

NB - the measured strains are not necessarily damaging
• Coke Drum Vasing -

- an effect of temperature loading
- occurs during oil-in operational step
 - condensation heats up lower elevations sooner than upper
 - differing temperatures in axial direction cause variable radial growth in drum
 - distortion in drum shell \(\rightarrow \) stresses – but where?
• Coke Drum Vasing -

 • drum vasing also occurs during
 • coke cool-down due to insulating effect as coke forms, liquid \(\rightarrow \) solid
 • water quench addition
 • vasing action is a nominal response
 • bitumen filling, water filling occur over same repeating nominal time period, nominal temperature range \(\rightarrow \) plug flow nature
 • localized distortions superimposed
 • system hydraulics cause channel flow & deviations in temperature \(\rightarrow \) strain, stress
• Comments on available published data
 • Field data validity
 • temperature data likely okay, except where insulation is left off
 • strain data is highly suspect – fundamental errors in methodology
 • thermal strain, e_{TH} is
 • inconsistently accounted for, or
 • not accounted for entirely
 • evaluation of strain gauge readings is incorrect
 • closed form expressions are not appropriate, equivalent strain expression premised on 2D model; however, 3D strain state is present
 • no data measured at most susceptible locations
• Comments on available published data
 • base material failure is accelerated likely due to HEAC
 • field & published data regarding base material failure –
 • proceeds rapidly in comparison to clad layer failure, months versus years
 • dependant on operational specifics
• Temperature loading – understanding the fundamentals
 • for isotropic material, temperature increase results
 • in uniform strain
 • no stress when body is free to deform
 • the total strain in a body, e_T is composed of two components
 • mechanical portion = e_M [due to pressure, weight, + others]
 • thermal portion = e_{TH}
 • then, $e_T = e_M + e_{TH}$
 • when thermal growth is constrained, $e_T = 0 \rightarrow e_M = -e_{TH}$
 • since $e_{TH} = \alpha \cdot \Delta T$, where $\alpha \equiv$ coefficient of thermal
 expansion or CTE and, the coke drum is in a biaxial stress state, then

\rightarrow thermal stress, $\sigma_{TH} = -E \cdot \alpha \cdot \Delta T / (1 - \mu)$
• Temperature loading [cont’d]
 • thermal expansion in coke drum is constrained due to several mechanisms
 • skirt structure
 • cladding – base material differential expansion due to mismatch in coefficient of thermal expansion, CTE

<table>
<thead>
<tr>
<th></th>
<th>100 F</th>
<th>800 F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTE-clad</td>
<td>6.0E-6</td>
<td>7.1E-6</td>
</tr>
<tr>
<td>CTE-base</td>
<td>6.6E-6</td>
<td>8.9E-6</td>
</tr>
</tbody>
</table>

• ΔT between adjacent parts of the structure due to varying exposure to incoming streams, i.e. bitumen [hot] and quench water [cold]
• Temperature loading [cont’d]

Thermal Expansion vs Temperature for Various Materials of Construction

![Graph showing thermal expansion vs temperature for various materials of construction. The graph plots CTE (10^-6/°F) against temperature (°F). The materials include C 1/2Mo, 1 1/4 Cr, 2-1/4 Cr, 410S, and N06625.]
• Temperature loading [cont’d]

E (Young's Modulus) vs Temperature

E - [10^6 psi]

Temperature [°F]

C 1/2Mo
1 1/4 Cr
2-1/4 Cr
410S
N06625
• Nature of Drum Failures
 • Low Cycle Fatigue – da / dN
 • characterized by high strain–low cycle
 • exacerbated by presence of code acceptable defects
 • cladding crack failure initiation $< 1,000 \sim 2,000$ cycles
 • cladding crack propagation thru thickness $\sim 2,500$ cycles
 • Environmentally assisted fatigue – da / dt
 • exposure of base material to hydrogen assisted mechanism
 • short time to through failure – hours to months
 • cleavage surfaces evident
- Number of Drums Reporting 1st Through Wall Crack – API Survey

Nature of Drum Failures – cont’d

- Upper bound strain
 - measured strain range, $\Delta \varepsilon = 2,500 \text{ ue} \sim 3,400 \text{ ue}$
 - calculated possible, $\Delta \varepsilon = 5,140 \text{ ue} \sim 10,080 \text{ ue}$

- Measurements fall well below values governed by system parameters
- System parameters indicate that strains repeat and will cause failure at susceptible locations
• ε - N Low Cycle Strain Life Curve for SA 387 12 Plate [2¼ Cr – 1Mo]

<table>
<thead>
<tr>
<th>ε</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,570</td>
<td>100,000</td>
</tr>
<tr>
<td>3,400</td>
<td>25,000</td>
</tr>
<tr>
<td>5,140</td>
<td>4,800</td>
</tr>
<tr>
<td>7,200</td>
<td>2,500</td>
</tr>
<tr>
<td>10,080</td>
<td>1,500</td>
</tr>
</tbody>
</table>

| Years | 274 | 68 | 13 | 7 | 4 |

- extremes
- failure can occur within 4 years
- potential service life of 274 years
- actual performance of unit is function of system specifics

* Sonoya, K., et al., ISIJ International v 31 (1991) n 12 p 1424 - 1430
• \(\sigma - N \) Low Cycle Strain Life Curve per ASME VIII Div 2

- ASME VIII Div 2 S – N chart is not appropriate for service life determination

\[
\begin{array}{c|cccccc}
\varepsilon & 2,570 & 3,400 & 5,140 & 7,200 & 10,080 \\
\sigma & 77.1 & 102.0 & 154.2 & 216.0 & 302.4 \\
N & 10,000 & 4,200 & 1,200 & 550 & 180 \\
\end{array}
\]
• Influence of Internal Defects
 • Code allows internal defects

• For material thickness over 3/4 inch to 2 inch, inclusive [19 mm to 50.8 mm]
 • Maximum size for isolated indication is ¼ " [6.4 mm] diameter
 • Table limiting defect size is given in ASME VIII Div 1
• Stress at Internal Defects

Stress at internal defect
Stress at clad
Stress at OD surface

- largest strains/stresses at
 - clad
 - internal defects
 - local distortions
- maximum range of strains & stresses known due to system parameters

![Graph showing stress at different locations over time](image-url)
Conclusions

- Field measurement techniques problematic
 - Thermal strain interpreted as mechanical strain
 - Measured strains well below upper bound strains
 - Strains at internal defects inaccessible, no measurement
 - Strains at material interface inaccessible, no measurement

- Upper bound approach determines maximum strains obtainable
 - Strain level, # of exposure incidents governed by system hydraulics
 - Strain level, # of exposures govern service life
 - Local shell deformations will further affect strain levels
 - Crack initiation function of clad & base material integrity
 - Through-wall base material failure related to HEAC susceptibility
• Evaluation

• improve field measurement techniques
• improve design procedures –
 • ASME VIII Div 1 not adequate to address complex loadings
 • more detailed & accurate estimation of stress required
 • need to consider more than material yield strength properties
• material selection opportunities – less expensive options for same performance
• preventative maintenance & repair opportunities identifiable
• Follow up work opportunities

 • develop improved field stress measurement technique
 • detection of internal defects and assessment technique
 • assessment of influence of local shell distortions
 • material constitutive modeling for better FEA modeling
 • characterization of base material performance in HEAC environment
 • identify alternative clad materials
 • develop appropriate design methodologies for coke drum

• Joint industry program – to leverage industry & NSERC resources
Contact

- Dr. Zihui Xia, University of Alberta
 - zihui.xia@ualberta.ca

- John Aumuller, EDA Ltd.
 - aumullerj@engineer.ca