ANALYSIS OF COKE DRUM CRACKING FAILURE MECHANISMS & COMMENTS ON SOME PUBLISHED RESULTS

More Production - Less Risk

Conference Calgary, Alberta

14 - 17 Sep 2009

EDA Engineering Design & Analysis Ltd.

J Aumuller, P. Eng.

Z Xia, Ph.D., P. Eng.

- Why stress determination
 - vessel bulging and cracking attributable to mechanical mechanism rather than metallurgical
 - primary mechanical failure mechanism is
 - \rightarrow low cycle thermal strain cycling \leftarrow
- What are
 - the various loadings
 - their nature
 - · contribution to the proposed failure mechanism

- Major loadings identified
 - pressure, live weight, dead weight
 - pressure is nominally constant over operating cycle cyclic
 - · live weight load from bitumen feed, quench water cyclic
 - dead weight load is constant
 - mechanical load due to coke crushing
 - as drum contracts, load due to restraint created by solid coke residual mass – cyclic, global
 - temperature load due to varying temperature of incoming streams – cyclic, variable, global & localized

 \rightarrow appears to be most damaging load mechanism \leftarrow

- Contribution to failure
 - pressure, live weight, dead weight
 - not likely due to design stresses well within elastic region, no evidence that stresses exceed elastic
 - mechanical load due to coke crushing
 - · feasible load, but not sufficiently severe
 - laser scan results do not generally support this mechanism
 - incremental distortion not evident
 - temperature load due to varying temperatures of incoming streams – cyclic, variable, global & localized aspects during operational cycle
 - \rightarrow magnitude & distribution consistent with nature of failures \leftarrow

- Character of temperature loading is complex
 - variation and variability in fluid stream temperatures & impacts on drum metal temperature [DMT]
 - vapor heat [~ 550 °F], nominally causes uniform rise in DMT; however, vapour heat temperature can vary widely per operator intervention – can go directly from steam to oil-in step → thermal shock
 - oil-in [~ 750 °F to 900 °F], nominally causes uniform rise in DMT
 - as bitumen solidifies and cools, uniform effects give way to localized effects

- · Character of temperature loading is complex [cont'd]
 - water quench [~ 250 °F]
 - · extreme thermal shock imposed on DMT
 - ~ 850 °F \rightarrow 250 °F oil-in & water quench temperatures
 - highly variable DMT due to flow channeling imposing hot & cold spots upon the drum shell that are also time variable, i.e. T = T (x, y, z, t) or T(θ, z, t)
 - \rightarrow highest potential impact on shell structural integrity \leftarrow

Pressure & Weight

Shell Course Temperature

Shell OD Strain - Measured

Coke Drum Vasing -

- an effect of temperature loading
- occurs during oil-in operational step
 - condensation heats up lower elevations sooner than upper
 - differing temperatures in axial direction cause variable radial growth in drum
 - distortion in drum shell → stresses but where?

Coke Drum Vasing -

- drum vasing also occurs during
 - coke cool-down due to insulating effect as coke forms, liquid → solid
 - water quench addition
- vasing action is a nominal response
 - bitumen filling, water filling occur over same repeating nominal time period, nominal temperature range
 → plug flow nature
- localized distortions superimposed
 - system hydraulics cause channel flow & deviations in temperature → strain, stress

- Comments on available published data
 - Field data validity
 - · temperature data likely okay, except where insulation is left off
 - strain data is highly suspect fundamental errors in methodology
 - thermal strain, $e_{\rm TH}$ is
 - · inconsistently accounted for, or
 - not accounted for entirely
 - · evaluation of strain gauge readings is incorrect
 - closed form expressions are not appropriate, equivalent strain expression premised on 2D model; however, 3D strain state is present
 - no data measured at most susceptible locations

- Comments on available published data
 - base material failure is accelerated likely due to HEAC
 - field & published data regarding base material failure -
 - proceeds rapidly in comparison to clad layer failure, months versus years
 - · dependant on operational specifics

- Temperature loading understanding the fundamentals
 - for isotropic material, temperature increase results
 - in uniform strain
 - no stress when body is free to deform
 - the total strain in a body, $e_{\rm T}$ is composed of two components
 - mechanical portion = e_{M} [due to pressure, weight, + others]
 - thermal portion = e_{TH}
 - then, $e_T = e_M + e_{TH}$
 - when thermal growth is constrained, $e_{\rm T} = 0 \rightarrow e_{\rm M} = -e_{\rm TH}$
 - since $e_{TH} = \alpha \cdot \Delta T$, where $\alpha \equiv$ coefficient of thermal expansion or CTE and, the coke drum is in a biaxial stress state, then

→ thermal stress, $\sigma_{TH} = - E \cdot \alpha \cdot \Delta T / (1 - \mu)$

- Temperature loading [cont'd]
 - thermal expansion in coke drum is constrained due to several mechanisms
 - skirt structure
 - cladding base material differential expansion due to mismatch in coefficient of thermal expansion, CTE

	100 F	800 F	
	[in/in/F]	[in/in/F]	
CTE-clad	6.0E-6	7.1E-6	
CTE-base	6.6E-6	8.9E-6	

 ΔT between adjacent parts of the structure due to varying exposure to incoming streams, i.e. bitumen [hot] and quench water [cold]

• Temperature loading [cont'd]

Thermal Expansion vs Temperature for Various Materials of Construction

• Temperature loading [cont'd]

E (Young's Modulus) vs Temperature

- Nature of Drum Failures
 - Low Cycle Fatigue da / dN
 - characterized by high strain—low cycle
 - exacerbated by presence of code acceptable defects
 - cladding crack failure initiation < 1,000 ~ 2,000 cycles
 - cladding crack propagation thru thickness ~ 2,500 cycles
 - Environmentally assisted fatigue da / dt
 - exposure of base material to hydrogen assisted mechanism
 - short time to through failure hours to months
 - cleavage surfaces evident

• Number of Drums Reporting 1st Through Wall Crack – API Survey

* Final Report, 1996 API Coke Drum Survey, Nov 2003, API, Washington, D.C.

- Nature of Drum Failures cont'd
 - Upper bound strain
 - measured strain range, $\Delta \epsilon = 2,500$ ue ~ 3,400 ue
 - calculated possible, $\Delta \epsilon = 5,140$ ue ~ 10,080 ue

- measurements fall well below values governed by system parameters
- system parameters indicate that strains repeat and will cause failure at susceptible locations

• ε - N Low Cycle Strain Life Curve for SA 387 12 Plate [21/4 Cr – 1Mo]

	3					
	2,570	3,400	5,140	7,200	10,080	
N	100,000	25,000	4,800	2,500	1,500	
Years	274	68	13	7	4	

- extremes
 - failure can occur within 4 years
 - potential service life of 274 years
- actual performance of unit is function of system specifics

* Sonoya, K., et al., ISIJ International v 31 (1991) n 12 p 1424 - 1430

• σ - N Low Cycle Strain Life Curve per ASME VIII Div 2

- Influence of Internal Defects
 - Code allows internal defects

(a) Random Rounded Indications [See Note (1)]

- For material thickness over ³/₄ inch to 2 inch, inclusive [19 mm to 50.8 mm]
 - Maximum size for isolated indication is 1/4 " [6.4 mm] diameter
 - Table limiting defect size is given in ASME VIII Div 1

Stress at Internal Defects

- Conclusions
 - field measurement techniques problematic
 - thermal strain interpreted as mechanical strain
 - measured strains well below upper bound strains
 - strains at internal defects inaccessible, no measurement
 - strains at material interface inaccessible, no measurement
 - upper bound approach determines maximum strains obtainable
 - strain level, # of exposure incidents governed by system hydraulics
 - strain level, # of exposures govern service life
 - · local shell deformations will further affect strain levels
 - · crack initiation function of clad & base material integrity
 - through-wall base material failure related to HEAC susceptibility

- Evaluation
 - improve field measurement techniques
 - improve design procedures
 - ASME VIII Div 1 not adequate to address complex loadings
 - more detailed & accurate estimation of stress required
 - need to consider more than material yield strength properties
 - material selection opportunities less expensive options for same performance
 - preventative maintenance & repair opportunities identifiable

- Follow up work opportunities
 - develop improved field stress measurement technique
 - detection of internal defects and assessment technique
 - · assessment of influence of local shell distortions
 - material constitutive modeling for better FEA modeling
 - characterization of base material performance in HEAC environment
 - identify alternative clad materials
 - develop appropriate design methodologies for coke drum
- Joint industry program to leverage industry & NSERC resources

- Contact
 - Dr. Zihui Xia, University of Alberta
 - zihui.xia@ualberta.ca
 - John Aumuller, EDA Ltd.
 - aumullerj@engineer.ca

EDA Engineering Design & Analysis Ltd.