Fatigue Life & Reliability Consideration During Field Repair of Coke Drum & Piping

2017 Refcomm Presentation at Galveston, Texas

May 8-12, 2017

OVERVIEW

- Introduction to RIL DCU & (16)-Coke drum / Piping System
- Repair Consideration
- ► Fatigue Life & Reliability Consideration
- Field Repair Execution (Solid Skirt ; Vapor Line)
- Routine Inspection & Monitoring
- Thermal Operation & Gradient Optimization
- ► Q & A

AmecFW DCU Process Licensor and DEC

Coker # 1

- Coker # 1 with (8)-coke drums / bottom feed / started in year '99
- ► Basis of original process design 24 hr coking cycle
- Coking cycle reduced to 14 hrs few years after commissioning

Coker # 2

- Coker # 2 with (8)- drums / single side feed / started in year '09
- (4) coke drums modified to dual feed inlet in year '13
- ► Basis of original process design 13 hr coking cycle
- Coke drum design "duplicate" of Coker # 1 except "uniform" wall

- Skirt Junction weld cracks continued to be monitored and repaired "on-line"
- Vapor line weld cracks continued to be monitored and repaired
- Thermal Gradient and operation optimization performed by plant operators in year 2007 with assistance from AmecFW
- Routine Inspection and monitoring programs for coke drum & piping welds implemented by RIL reliability team per recommendation and assistance from AmecFW
- Current goal is field repair of coke drum / piping considering also fatigue life and reliability improvement
- Current modification to coke drums include the use of Center Feed Injection Device

(Operational results will be shared in future)

Field Repair & Fatigue Life / Reliability Improvement Consideration

- Can existing design be upgraded to be fatigue resistant ?
- Can existing fabrication practice be upgraded to be fatigue resistant
- Can existing thermal operation be further optimized to reduce thermal gradient after switch to coking and during water quench ?
- Can Delta T between drum / Vapor line be reduced during quench ?

Fatigue Life & Reliability Consideration (cont'd)

Weld build-up skirt junction crack, typical Locations & Fatigue Resistant Consideration: Can thermal B.M. / Stress be reduced at skirt crotch area by redesign ?

Fatigue Life & Reliability Consideration (cont'd) (Modification of coke drum solid skirt to slotted skirt)

Fatigue resistant design change during field repair to reduce moment / stress. Repair performed <u>during shutdown using shop</u> fabricated slotted skirt panel, field welding & <u>PWHT</u>

Key Factors to be considered during the field repair of aging coke drum:

- The original design, fatigue life basis, stress riser and fatigue resistance of the coke drums.
- ► The original fabrication and stress risers of coke drum.
- Coke drum temperature monitoring data using skin TI's, Thermal gradient and Thermal Operation history of coke drum
- Coking cycle history
- Operating thermal operation parameters including preheat, drum temperature at switch to coking, switch operation and water quench.
- Past inspections and repair history of shell / cone and critical welds, crack, bulge and detailed mechanical integrity assessments
- Stress riser and the quality of corner intersections (chamfering / radiused) between slots and keyholes especially at the upper keyhole

Fatigue Life & Reliability Consideration (cont'd) (Modification of coke drum solid skirt to slotted skirt)

FEA of solid and slotted skirt, thermal gradient & estimated fatigue life A comparative stress study of skirt modification was performed. The results are tabulated below

Skirt Description	Skirt Slot	Thermal Gradient	Estimated Fatigue Life (Inner Crotch)	Estimated Fatigue Life (Upper Keyhole)	
Original / Solid	None	8H@500F/ 10Q	2100	N/A	
Original / Solid	None	12H@500F /20Q	1200	N/A	
Modified/ Slotted	WITH SLOTS	8H@500F /10Q	>7000	>7000	
Modified/ Slotted	WITH SLOTS	12H@500F /20Q	4800	8900	

Fatigue Life & Reliability Consideration (cont'd) Operating thermal gradient review & optimization

Thermal Gradient Review of Skirt Junction and Optimization of Coke drum Thermal Operation

Fatigue Life & Reliability Assessment (cont'd) Thermal Gradient Review and Optimization

Optimization of thermal Operation & gradients:

Key operational parameters depending on the design and fatigue life basis:

- Pre-heat temperature of coke drum prior to switch to coking
- ► (290 deg C is preferred but should be a minimum of 260 deg C)
- The duration of the switch to coking to avoid thermal shock (generally a 2-step switch targeting a 15 minute interval).
- The transient thermal gradients after switch to coking (generally in the target range of 4 – 7 deg C/min)
- The transient thermal gradients during water quenching (generally in the target range of 8 – 12 deg C/min)
- Optimize the quench rate and schedule to accomplish the above targets and guidelines

Overhead Piping Critical High Stress Weld, Crack & Repair Consideration

- ► Thermal Fatigue & Vibration Induced Fatigue Consideration
- Original design, whether fatigue resistant
- Weld quality impacts on fatigue life and Fatigue Strength Reduction Factor consideration
- Components for which ASME B31.3 Code does not provide equation to calculate Stress Intensification Factor (SIF)
- ► SIF for Pipe or Pipe Fitting to Pipe Thickness mismatch
- ► SIF for pipe to reducer
- ► SIF for pipe to flange
- SIF of the above weld junctions require detailed FEA for further use

Fatigue Life & Reliability Consideration (cont'd) Enhanced fabrication and NDE of piping welds during repair

Enhanced fabrication, examination and inspection in addition to the typical welding and NDE procedures, specifically:

- The final weld pass on the ID and OD is to be ground smooth and flush to remove any weld cap.
- Any offset between thicknesses to be ground to 10:1 taper or use thickness transition spool.
- 100% visual inspection of both OD and ID is required.
- For carbon and low alloy steel materials, perform 100% inspection of the root pass and final pass (ID as well as OD) after grinding smooth and flush.
- 100% RT of the final weld.
- Acceptance criteria for welds per B31.3 Table 341.3.2 for severe cyclic service

Fatigue Life & Reliability Consideration (cont'd) Effect of banana movement, BE & piping stress

Coke Drum Banana Movement Estimate

- Consider temperature difference between the hot side and the cold side of coke drum shell during operation, especially during quench
- Estimate the banana movement, (BE), of the coke drum

BE = 1.2 (R+0.5D) (1-cos (α))

Where $\alpha = 57.2956 \text{ } \gamma \text{ (Th-Tc)} (1+\gamma x \text{Tc}) \pi /(180 \text{D})$

- Perform overhead piping system stress analysis
- > Perform repair assessment considering cyclic thermal stress level:

Legend

Reliance

- D Coke drum nominal diameter
- L Coke Drum Height, Bottom Tangent Line to Top Tangent Line
- Th Shell Hot Side Temperature
- Tc Shell Cold Side Temperature
- γ Coefficient of thermal expansion

amec foster wheeler

Fatigue Life & Reliability Consideration (cont'd) Calculation of SCF at thickness mismatch using FEA

FEA STRESS RESULTS & SCF

FEA MODEL - 2D AXISYMMETRIC @ Pipe / Fitting Wall Thickness Mismatch

Fatigue Life & Reliability Consideration (cont'd) Calculation of "Delta T" between Coke drum & OVHD line

Temperature Profile for TI's @ Various elevations of coke drum (DFI)

Consideration for Skirt Repair / Modification

Consideration for Skirt Repair / Modification

Consideration for Skirt Repair / Modification

Field Repair Execution: Case # 1 (Solid Skirt Modification to Slotted Skirt)

"On-Line" fabrication Of Mock-up Sample. New Methodology for Skirt Slot & Keyhole cutting & Chamfering with radiused & smooth corner finish (both Inside & Outside Surfaces)

Field Repair Execution: Case # 1 (cont'd) ame foster wheeler Mock-Up Sample Preparation of Slotted Skirt with Keyhole

Routine Inspection & Monitoring (cont'd) Coke Drum Skirt Junction

				Jan 2	012 : Sch	eduled M					cirt/Knuckl								
Coke Drum	Date	Location	1	2	3	1	1n	spection pe	ep windows	(Counting 8	CW, 0°N as	reference: 10	N>E>S 11	>W) 12	13	14	15	16	
		Skirt joint	ок	ок	ок	ок	ок	ок	ок	ок	ОК	ок	ок	OK	ок	ок	ок	N/	
R01	07.01.2012	Knuckle joint	ок	ок	ОК	ОК	ОК	ОК	ок	ок	ок	ок	ок	OK	ок	ок	ок	N	
		Skirt joint	ок	ОК	ОК	ОК	ок	OK	ОК	OK	OK	ОК	ок	ок	ок	ОК	NA	N	
R02	05.01.2012	Knuckle joint	ок	ок	ок	ок	ОK	ОК	ок	ок	ок	ак	ок	ОК	ОК	ок	NA	N	
100001		Skirt joint	OK	ОК	QК	ок	OK	ОК	ОК	OK	OK	OK	ок	OK	ок	OK	OK	0	
R03	05.01.2012	Knuckle joint	ок	ок	ок	OK	ОК	ОК	ОК	ОК	ОК	ок	ОК	ок	ок	OK	ОК	0	
004	00.01.0010	Skirt joint	OK	OK	OK	OK	OK	OK	ОК	ОК	OK	OK	ок	OK	OK	OK	OK	0	
R04	06.01.2012	Knuckle joint	ок	ок	ок	ок	ок	ОК	ок	OK	ок	ок	ок	ок	ок	ок	OK	0	
R05	09.01.2012	Skirt joint	OK	OK	ОК	OK	OK	OK	ОК	OK	OK	OK	ок	OK	OK	OK	NA	N	
RUS	09.01.2012	Knuckle joint	ок	ок	OK	OK	OK	OK	ок	OK	OK	ок	OK	ок	ок	ОК	NA	N	
R06	05.01.2012	Skirt joint	оĸ	ОК	OK	∂NI	OK	OK	ОК	OK	OK	OK	ок	OK	ок	ОК	OK	N	
RUG	05.01.2012	Knuckle joint	OK	ОК	ОК	NI	OK	OK	ок	OK	ок	OK	ок	OK	ок	ок	OK	N	
R07	09.01.2012	Skirt joint	ок	ОК	ОК	OK	OK	ОК	ОК	OK	OK	OK	ок	OK	ок	OK	OK	N	
riv!	00.012012	Knuckle joint	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	ОК	OK	OK	N	
R08	05 01 2012	Skirt joint	ок	ок	ок	NI	OK	ОК	ОК	ок	ОК	OK	ок	OK	ок	ок	OK	N	
NU0 U5.01.2	RUB	05.01.2012	Knuckle joint	ок	NI	OK	NI	OK	ОК	ОК	OK	OK	OK	ок	OK	OK	ОК	OK	N

TYPICAL INSPECTION/MONITORING FOR KNUCKLE/SKIRT

Legends

OK: No visual indication of any crack HLC: Hair line cracklike indication visible.

Hair line cracklike indication visible. Not inspected this time due to improper cutting of glass wool/ obstruction of alt drain line or scaffolding pipe.

NA

Not available, Indications "as is" wrt last inspection, Indications increased wrt last inspection. New indications observed this time.

CD summary	Skirt	no. of drums	Knuckle	no. of drums	
"as-is" wrt last inspection	×.			20	
indications increased	19	1		3	
new indications	-	1000			
otal drums with HLC visible	NIL	NIL	NIL.	NIL	

FIELD REPAIR CASE # 2: Vapor Line Weld Crack at Thickness Mismatch (Fitting to Pipe)

FIELD REPAIR CASE # 2: Vapor Line Weld Crack at Thickness Mismatch (Fitting to Pipe)

FIELD REPAIR CASE # 2: Vapor Line Weld Crack at Thickness Mismatch (Fitting to Pipe)

New methodology of vapor line weld crack repair using taper thickness transition spool to minimize stress riser

Routine Inspection & Monitoring (cont'd) Coke Drum Critical Piping Welds

High Stress Welds and Nodes

Coke Drum & Piping Routine Inspection & Monitoring

	On line	Off line			
Skirt	16 window inspection lanes (Visual monthly inspection)	Visual / MPI / PA UT (during pigging)			
SKIL	Anchor bolts (Visual, UFD once in 2 years)				
	Temperature data monitoring (six monthly)				
	Banana movment	Ext PAUT @ strategic circ welds (every pigging)			
Shell	LASER scans / Bulge mapping / Bulge assessment (condition based)	Ext PAUT @Nozzles (every shutdown)			
		Hardness surveys of clad/welds (every shutdown)			
Piping	Supports (visual 3 - 5 years)	High Stress Nodes			

Coke Drum Thermal Operation / Thermal Gradient Optimization

Coke Drum & Piping Monitoring, Assessment, Repair for Fatigue Life and Safety Improvement

Fatigue Life & Reliability Consideration During Field Repair of Coke Drum & Piping

Thank you

