Cetek "Matrix Coating System" & It's Use at MiRO - Karlsruhe, Germany May 2007

Steve Cherico Business Director

Presentation Contents:

Ceramic Coatings

- Theory & Applications on:
 - · Refractories (high emissivity coatings)
 - NOx Emission Reduction (up to 35%)
 - Process Tubes (elimination of oxidation, scaling & fouling)
 - "Matrix Coating System" (manipulation of heat flux)
 - Application to MiRO's Coker Heaters

Furnace Radiation

The radiation from the burners goes in all directions.

- Some goes directly to the process tubes.
- •How the tubes accept the radiation has an influence on the efficiency of radiant heat transfer
- •Some of the radiation goes to the refractory lining.
- How that interacts with the radiation also has an influence on the radiant heat transfer efficiency.

Radiant Heat Transfer Mode in a Fired Heater

Heat Flux = $C \times (T_s^4 - T_r^4) \times F_e \times F_a$

 $T_{\rm s}$: absolute temperature of radiation source

 $T_{\rm r}$: absolute temperature of radiation receiver

F_e: emissivity factor

F_a: furnace shape factor

C: constant

- It is therefore important to maintain the surface temperature of the tubes, T, as low as possible.
- It is important to maintain the Emissivity Factor, $F_{\rm o}$
- as high as possible

Cetek Ceramic Coatings

- Coatings for Refractories:
 - High Emissivity Property
 - Increased Radiant Heat Exchange Efficiency
 - More Heat Available to the Process
 - Lower Flue Gas / Bridge Wall Temperatures
 » Reduces NOx Emissions (20% to 30%)
 - Higher Heat Flux to Back of Tubes in Single-Fired Heaters
 - Reduces Peak/Average Heat Flux
 - Increases "effective tube surface area"
 - More Uniform Heat Flux throughout the Heater
 - Helps to eliminate radiant "Hot Spots"

Cetek Ceramic Coatings

- Coatings for Process Tubes:
 - Elimination & Prevention of Oxidation (Scale) + High Emissivity
 - Increased Conductive Heat Transfer
 - More Heat Available to the Process
 - » Lower Bridge Wall Temperatures
 - Back of Tubes Can Accept More Heat
 - In combination with high emissivity refractory coating
 - Reduces Peak/Average Heat Flux
 - No scale on tube surfaces to confuse thermography measurements

Cetek Matrix Coating System

What Cetek Coatings Can Do

- Manipulate heat flux distribution in single fired heaters
- Design coatings based on coking pattern of fire box
- Measure true tube metal temperature by removal of all scale and install uniform ceramic coating layer
- Easy coking detection using infrared camera or pyrometer through the elimination of uneven scale delta T

Cetek Matrix Coating System (US Patent # 6,626,663B1)

- Variable Emissivity Tube Coatings
 - Increase, or Decrease Absorbed Heat Flux
 - Protects Tubes in High Flux Zones
 - Reduces Skin Temperatures
- Reduction of Peak/Average Heat Flux in Single Fired Heaters
 - Use of Coatings on Both Refractory and Tubes
 - Reduces Heat Flux on Fired Side of Tubes
 - Increases Heat Flux on Back Side of Tubes
 - Effectively Increases "Effective Tube Surface Area"
 - Manipulates Heat Flux Zones
 - · Reduces High Heat Flux
 - · Increases Low Heat Flux

IR Thermography Inspection Observations: High Tubes Surface Temperatures on Lower Side Tubes Lower Tube Surface Temperatures on Upper Wall Tubes High Tube Surface Temperatures on Roof Tubes High Tube Surface Temperatures on Roof Tubes

Matrix Coating System Design

- High & Low Emissivity Tube Coating
- High Emissivity Tube Coating
- High Emissivity Refractory Coating

Heater Simulation Results

	Units	Before Coating	After Coating
Average Flux of the Upper 6 Wall	KW/m²	40.1	43.1
Average Flux of the 9 Roof Tubes	KW/m ²	40.1	39.7
Average Flux of the Lower 10 Wall Tubes	KW/m²	40.1	38.8
Front 180° Tube Heat Flux - Upper 6 Wall Tubes	KW/m²	57.0	60.9
Front 180° Tube Heat Flux - Roof Tubes & 10 Lower Wall Tubes	KW/m²	57.0	49.0
Flux Ratio of Front 180° / Average	Ratio	1.42	1.25
Bridge Wall Temperature	°C	817	805

IR Thermography Inspection Comparison

Before Coating

After Coating

Summary of Results & Conclusions

- Rate of TMT Increase Reduced from 0.48°C/day to 0.35°C/day
- Maximum TMT reduced & not limited Run Length
- Increased Run Length, at Maximum Throughput
- Lower Flue Gas & Bridge Wall Temperatures
- Improved TST Uniformity
- Consistent Temperature Gradient across Coating
- More Accurate Determination of TMT & Coke Formation

Acknowledgements

- Cetek would like to thank both MiRO and ConocoPhillips for their support and assistance throughout the planning, execution and evaluation of the performance of this Matrix Ceramic Coating application.
- Special acknowledgement would like to be given to Mr.
 Frank Schaeffer of MiRO and Mr. John Bacon of Cetek for their contributions to this presentation.

