Cetek "Matrix Coating System" & Its Use at MiRO - Karlsruhe, Germany
May 2007

Steve Cherico
Business Director

Presentation Contents:

Ceramic Coatings

- Theory & Applications on:
 - Refractories (high emissivity coatings)
 - NOx Emission Reduction (up to 35%)
 - Process Tubes (elimination of oxidation, scaling & fouling)
 - "Matrix Coating System" (manipulation of heat flux)
 - Application to MiRO's Coker Heaters
Furnace Radiation

The radiation from the burners goes in all directions.

• Some goes directly to the process tubes.
• How the tubes accept the radiation has an influence on the efficiency of radiant heat transfer.
• Some of the radiation goes to the refractory lining.
• How that interacts with the radiation also has an influence on the radiant heat transfer efficiency.

Radiant Heat Transfer Mode in a Fired Heater

Heat Flux = C \times (T_s^4 - T_r^4) \times F_e \times F_a

- T_s: absolute temperature of radiation source
- T_r: absolute temperature of radiation receiver
- F_e: emissivity factor
- F_a: furnace shape factor
- C: constant

- It is therefore important to maintain the surface temperature of the tubes, T_r, as low as possible.
- It is important to maintain the Emissivity Factor, F_e
- as high as possible
Cetek Ceramic Coatings

• Coatings for Refractories:
 - High Emissivity Property
 • Increased Radiant Heat Exchange Efficiency
 - More Heat Available to the Process
 - Lower Flue Gas / Bridge Wall Temperatures
 » Reduces NOx Emissions (20% to 30%)
 • Higher Heat Flux to Back of Tubes in Single-Fired Heaters
 - Reduces Peak/Average Heat Flux
 - Increases “effective tube surface area”
 • More Uniform Heat Flux throughout the Heater
 - Helps to eliminate radiant “Hot Spots”

Cetek Ceramic Coatings

• Coatings for Process Tubes:
 - Elimination & Prevention of Oxidation (Scale) + High Emissivity
 • Increased Conductive Heat Transfer
 - More Heat Available to the Process
 » Lower Bridge Wall Temperatures
 • Back of Tubes Can Accept More Heat
 - In combination with high emissivity refractory coating
 - Reduces Peak/Average Heat Flux
 • No scale on tube surfaces to confuse thermography measurements
Cetek Matrix Coating System

What Cetek Coatings Can Do

- Manipulate heat flux distribution in single fired heaters
- Design coatings based on coking pattern of fire box
- Measure true tube metal temperature by removal of all scale and install uniform ceramic coating layer
- Easy coking detection using infrared camera or pyrometer through the elimination of uneven scale delta T

Heat Flux Problems...

For example:

- Low Flux Zone
- Good Flux Level
- High Flux Zone
Cetek Matrix Coating System (US Patent # 6,626,663B1)

- **Variable Emissivity Tube Coatings**
 - Increase, or Decrease Absorbed Heat Flux
 - Protects Tubes in High Flux Zones
 - Reduces Skin Temperatures

- **Reduction of Peak/Average Heat Flux in Single – Fired Heaters**
 - Use of Coatings on Both Refractory and Tubes
 - Reduces Heat Flux on Fired Side of Tubes
 - Increases Heat Flux on Back Side of Tubes
 - Effectively Increases “Effective Tube Surface Area”
 - Manipulates Heat Flux Zones
 - Reduces High Heat Flux
 - Increases Low Heat Flux

Cetek Matrix Coating System – Heat Flux manipulation

[Diagram showing the application of high emissivity coating on refractory and matrix coating system on tubes.]

[Logo and text for Cetek.]
MiRO Coker Heater Application

Heater Schematic

IR Thermography Inspection

Observations:
- High Tubes Surface Temperatures on Lower Side Tubes
- Lower Tube Surface Temperatures on Upper Wall Tubes
- High Tube Surface Temperatures on Roof Tubes
Matrix Coating System Design

- High & Low Emissivity Tube Coating
- High Emissivity Tube Coating
- High Emissivity Refractory Coating

Heater Simulation Results

<table>
<thead>
<tr>
<th>Units</th>
<th>Before Coating</th>
<th>After Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Flux of the Upper 6 Wall Tubes</td>
<td>40.1</td>
<td>43.1</td>
</tr>
<tr>
<td>Average Flux of the 9 Roof Tubes</td>
<td>40.1</td>
<td>39.7</td>
</tr>
<tr>
<td>Average Flux of the Lower 10 Wall Tubes</td>
<td>40.1</td>
<td>38.8</td>
</tr>
<tr>
<td>Front 180° Tube Heat Flux - Upper 6 Wall Tubes</td>
<td>57.0</td>
<td>60.9</td>
</tr>
<tr>
<td>Front 180° Tube Heat Flux - Roof Tubes & 10 Lower Wall Tubes</td>
<td>57.0</td>
<td>49.0</td>
</tr>
<tr>
<td>Flux Ratio of Front 180° / Average Flux</td>
<td>Ratio</td>
<td>1.42</td>
</tr>
<tr>
<td>Bridge Wall Temperature</td>
<td>°C</td>
<td>817</td>
</tr>
</tbody>
</table>
Tube Skin Temperatures After Coating

F-001: TMTs after ceramic coating was applied (adjusted for furnace duty)

- TMT Increase Rate: 9.36°C/day
- (TMT Increase Rate: 0.48°C/day Before Coating)

Flue Gas & Bridge Wall Temperature

- Depressed Ceramic Furnace
- Bolt and Flue Gas Temp. were adjusted (furnace duty)

Cetek Ceramic Technologies
IR Thermography Inspection Comparison

Before Coating

After Coating

Summary of Results & Conclusions

- Rate of TMT Increase Reduced from 0.48°C/day to 0.35°C/day
- Maximum TMT reduced & not limited Run Length
- Increased Run Length, at Maximum Throughput
- Lower Flue Gas & Bridge Wall Temperatures
- Improved TST Uniformity
- Consistent Temperature Gradient across Coating
- More Accurate Determination of TMT & Coke Formation
Acknowledgements

• Cetek would like to thank both MiRO and ConocoPhillips for their support and assistance throughout the planning, execution and evaluation of the performance of this Matrix Ceramic Coating application.

• Special acknowledgement would like to be given to Mr. Frank Schaeffer of MiRO and Mr. John Bacon of Cetek for their contributions to this presentation.