## Strategies for Managing Contaminant Metals in the FCC Unit

RefComm Galveston – May 2017 Rebecca Kuo, Technical Service Engineer



## BASF We create chemistry

## Agenda

- Feedstock variations
- Contaminant metals and their effects
  - Case studies
  - Mitigation strategies
- Advanced passivation technologies

## **Diverse FCC Feeds**

- Residue-containing and tight oil feeds have become much more prevalent in FCC
- Resids typically contain high Ni, V, CCR, N
- Tight oils typically contain high Fe, Ca, Na



Oil Quality Variability from One Field

| Feed<br>Property | Global<br>Average | Global<br>Minimum | Global<br>Maximum |
|------------------|-------------------|-------------------|-------------------|
| API              | 24.0              | 10.4              | 31.7              |
| CCR, wt%         | 1.5               | 0.02              | 8.87              |
| Ni, ppm          | 2.3               | 0                 | 13                |
| V, ppm           | 2.7               | 0                 | 15                |
| Fe, ppm          | 4.8               | 0                 | 35                |
| Na, ppm          | 1.3               | 0                 | 6                 |
| Basic N, ppm     | 377               | 5                 | 1058              |

#### **Gasoil-Resid Unit Split**



4

Resid >3000 ppm ecat Ni + V; Gasoil <3000 ppm ecat Ni + V</p>

Globally, more units are processing resid with the average moving from ~40% resid in the early 2000s, to today ~50%



## Why do we care about metal contaminants?

- Metal contaminants are harmful to the catalyst and can cause unwanted reactions in the FCCU
- The metals deposit on the circulating catalyst and cause competing chemistries to the desired reactions
- Salts (Na, Ca, Mg) act as a base and attack the acid sites on the catalyst, lowering activity and conversion



#### **Elements of Concern**

-

D = BASF Ne create chemistry

0

Elements of high concern to be discussed in this presentation Elements of concern to be mentioned briefly in this presentation

| H        |          |    | _   |     |     |     |     |     |     |     | j   |          | - 1      |         |         |          | Z<br>He  |
|----------|----------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|---------|---------|----------|----------|
| 3<br>Li  | 4<br>Be  |    |     |     |     |     |     |     |     |     |     | 5<br>B   | 6<br>C   | 7<br>N  | 8<br>0  | 9<br>F   | 10<br>Ne |
| 11<br>Na | 12<br>Mg |    |     |     |     |     |     |     |     |     |     | 13<br>Al | 14<br>Si | 15<br>P | 16<br>S | 17<br>Cl | 18<br>Ar |
| 19       | 20       | 21 | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31       | 32       | 33      | 34      | 35       | 36       |
| K        | Ca       | Sc | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga       | Ge       | As      | Se      | Br       | Kr       |
| 37       | 38       | 39 | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49       | 50       | 51      | 52      | 53       | 54       |
| Rb       | Sr       | Y  | Zr  | Nb  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In       | Sn       | Sb      | Te      |          | Xe       |
| 55       | 56       |    | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81       | 82       | 83      | 84      | 85       | 86       |
| Cs       | Ba       |    | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | TI       | Pb       | Bi      | Po      | At       | Rn       |
| 87       | 88       |    | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113      | 114      | 115     | 116     | 117      | 118      |
| Fr       | Ra       |    | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh       | Fl       | Ms      | Lv      | Ts       | Og       |

6

#### **Elements of Concern: Nickel**

1

BASF
Ne create chemistry

2

Elements of high concern to be discussed in this presentation Elements of concern to be mentioned briefly in this presentation

| Ĥ        |          |    |     |     |     |     |     |     |     |     |     |          |          |         |         |          | He       |
|----------|----------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|---------|---------|----------|----------|
| 3<br>Li  | 4<br>Be  |    |     |     |     |     |     |     |     |     |     | 5<br>B   | 6<br>C   | 7<br>N  | 8<br>0  | 9<br>F   | 10<br>Ne |
| 11<br>Na | 12<br>Mg |    |     |     |     |     |     |     |     |     |     | 13<br>Al | 14<br>Si | 15<br>P | 16<br>S | 17<br>Cl | 18<br>Ar |
| 19       | 20       | 21 | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31       | 32       | 33      | 34      | 35       | 36       |
| K        | Ca       | Sc | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga       | Ge       | As      | Se      | Br       | Kr       |
| 37       | 38       | 39 | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49       | 50       | 51      | 52      | 53       | 54       |
| Rb       | Sr       | Y  | Zr  | Nb  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In       | Sn       | Sb      | Te      |          | Xe       |
| 55       | 56       |    | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81       | 82       | 83      | 84      | 85       | 86       |
| Cs       | Ba       |    | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | TI       | Pb       | Bi      | Po      | At       | Rn       |
| 87       | 88       |    | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113      | 114      | 115     | 116     | 117      | 118      |
| Fr       | Ra       |    | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh       | Fl       | Ms      | Lv      | Ts       | Og       |

7

#### **Nickel Sources & Effects**

- Ni comes in with the feed and deposits on catalyst particles
  - Undergoes redox cycles
  - Nickel oxides do not migrate



Ni acts as a dehydrogenation catalyst





## Nickel Effects Case Study



BASE

•

#### **Nickel Mitigation Strategies**

- Typically, Ni becomes a concern >800 ppm on the ecat
- Some refiners use antimony (Sb) injection to passivate Ni
  - Can increase NOx emissions
  - Can increase bottoms fouling
- A more permanent solution is to use catalyst with specialty alumina (such as Flex-Tec)
  - Ni deposits on alumina and becomes passivated



#### **Elements of Concern**

1

D = BASF We create chemistry

2

Elements of high concern to be discussed in this presentation Elements of concern to be mentioned briefly in this presentation

| H        |          |    |     |     |     |     |     |     |     |     | ,   |          | ·        |         |         |          | He       |
|----------|----------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|---------|---------|----------|----------|
| 3<br>Li  | 4<br>Be  |    |     |     |     |     |     |     |     |     |     | 5<br>B   | 6<br>C   | 7<br>N  | 8<br>0  | 9<br>F   | 10<br>Ne |
| 11<br>Na | 12<br>Mg |    |     |     |     |     |     |     |     |     |     | 13<br>Al | 14<br>Si | 15<br>P | 16<br>S | 17<br>Cl | 18<br>Ar |
| 19       | 20       | 21 | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31       | 32       | 33      | 34      | 35       | 36       |
| K        | Ca       | Sc | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga       | Ge       | As      | Se      | Br       | Kr       |
| 37       | 38       | 39 | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49       | 50       | 51      | 52      | 53       | 54       |
| Rb       | Sr       | Y  | Zr  | Nb  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In       | Sn       | Sb      | Te      |          | Xe       |
| 55       | 56       |    | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81       | 82       | 83      | 84      | 85       | 86       |
| Cs       | Ba       |    | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | TI       | Pb       | Bi      | Po      | At       | Rn       |
| 87       | 88       |    | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113      | 114      | 115     | 116     | 117      | 118      |
| Fr       | Ra       |    | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh       | Fl       | Ms      | Lv      | Ts       | Og       |

11

## **Elements of Concern: Vanadium**



Elements of high concern to be discussed in this presentation

|          |          |          |           | Elama     | nto o     | faanc     | orn ta    | s ha n    | aontia    | nod h     | riafly    | in thi    | n nraa    | optoti    | ion       |           |           |
|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 1<br>H   |          |          |           | leme      | ents o    |           | en la     | рреп      |           |           | nelly     |           | spres     | entat     |           |           | 2<br>He   |
| 3<br>Li  | 4<br>Be  |          |           |           |           |           |           |           |           |           |           | 5<br>B    | 6<br>C    | 7<br>N    | 8<br>0    | 9<br>F    | 10<br>Ne  |
| 11<br>Na | 12<br>Mg |          |           |           |           |           |           |           |           |           |           | 13<br>Al  | 14<br>Si  | 15<br>P   | 16<br>S   | 17<br>Cl  | 18<br>Ar  |
| 19<br>K  | 20<br>Ca | 21<br>Sc | 22<br>Ti  | 23<br>V   | 24<br>Cr  | 25<br>Mn  | 26<br>Fe  | 27<br>Co  | 28<br>Ni  | 29<br>Cu  | 30<br>Zn  | 31<br>Ga  | 32<br>Ge  | 33<br>As  | 34<br>Se  | 35<br>Br  | 36<br>Kr  |
| 37<br>Rb | 38<br>Sr | 39<br>Y  | 40<br>Zr  | 41<br>Nb  | 42<br>Mo  | 43<br>Tc  | 44<br>Ru  | 45<br>Rh  | 46<br>Pd  | 47<br>Ag  | 48<br>Cd  | 49<br>In  | 50<br>Sn  | 51<br>Sb  | 52<br>Te  | 53<br>    | 54<br>Xe  |
| 55<br>Cs | 56<br>Ba |          | 72<br>Hf  | 73<br>Ta  | 74<br>W   | 75<br>Re  | 76<br>Os  | 77<br>Ir  | 78<br>Pt  | 79<br>Au  | 80<br>Hg  | 81<br>TI  | 82<br>Pb  | 83<br>Bi  | 84<br>Po  | 85<br>At  | 86<br>Rn  |
| 87<br>Fr | 88<br>Ra |          | 104<br>Rf | 105<br>Db | 106<br>Sg | 107<br>Bh | 108<br>Hs | 109<br>Mt | 110<br>Ds | 111<br>Rg | 112<br>Cn | 113<br>Nh | 114<br>FI | 115<br>Ms | 116<br>Lv | 117<br>Ts | 118<br>Og |

#### **Vanadium Sources & Effects**

- Vanadium comes in with the feed and deposits on the catalyst particle
- V is converted into an oxide
  - V is very mobile can migrate from particle to particle & within the particle
- Destroys zeolite, especially in the presence of high Na
- V causes significant reduction in activity and has some dehydrogenation activity



## Vanadium Effects Case Study



14

BASE

•

## **Vanadium Mitigation Strategies**

- Typically, V becomes a concern >1500 ppm on ecat
- Refiners can use a V-trap additive to passivate
  - Can be REO, Ca, or Ca/Mg based
  - Can be added separately or blended into the catalyst formulation



- Because the effect of V is exaggerated with high Na, use a low-Na fresh catalyst
- Increase catalyst additions or use purchased catalyst to flush out the V in the circulating inventory

#### **Elements of Concern**

1

D = BASF We create chemistry

2

Elements of high concern to be discussed in this presentation Elements of concern to be mentioned briefly in this presentation

| H        |          |    |     |     |     |     |     |     |     |     | ,   |          | ·        |         |         |          | He       |
|----------|----------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|---------|---------|----------|----------|
| 3<br>Li  | 4<br>Be  |    |     |     |     |     |     |     |     |     |     | 5<br>B   | 6<br>C   | 7<br>N  | 8<br>0  | 9<br>F   | 10<br>Ne |
| 11<br>Na | 12<br>Mg |    |     |     |     |     |     |     |     |     |     | 13<br>Al | 14<br>Si | 15<br>P | 16<br>S | 17<br>Cl | 18<br>Ar |
| 19       | 20       | 21 | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31       | 32       | 33      | 34      | 35       | 36       |
| K        | Ca       | Sc | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga       | Ge       | As      | Se      | Br       | Kr       |
| 37       | 38       | 39 | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49       | 50       | 51      | 52      | 53       | 54       |
| Rb       | Sr       | Y  | Zr  | Nb  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In       | Sn       | Sb      | Te      |          | Xe       |
| 55       | 56       |    | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81       | 82       | 83      | 84      | 85       | 86       |
| Cs       | Ba       |    | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | TI       | Pb       | Bi      | Po      | At       | Rn       |
| 87       | 88       |    | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113      | 114      | 115     | 116     | 117      | 118      |
| Fr       | Ra       |    | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh       | Fl       | Ms      | Lv      | Ts       | Og       |

16

#### **Elements of Concern: Sodium**



Elements of high concern to be discussed in this presentation
Elements of concern to be mentioned briefly in this presentation

| 1<br>H    |          |    |     |     | 51113 0 |     |     |     |     |     | hieny |          | s prod   | ontati  |         |          | 2<br>He  |
|-----------|----------|----|-----|-----|---------|-----|-----|-----|-----|-----|-------|----------|----------|---------|---------|----------|----------|
| - 3<br>Li | 4<br>Be  |    |     |     |         |     |     |     |     |     |       | 5<br>B   | 6<br>C   | 7<br>N  | 8<br>0  | 9<br>F   | 10<br>Ne |
| 11<br>Na  | 12<br>Mg |    |     |     |         |     |     |     |     |     |       | 13<br>Al | 14<br>Si | 15<br>P | 16<br>S | 17<br>Cl | 18<br>Ar |
| 19        | 20       | 21 | 22  | 23  | 24      | 25  | 26  | 27  | 28  | 29  | 30    | 31       | 32       | 33      | 34      | 35       | 36       |
| K         | Ca       | Sc | Ti  | V   | Cr      | Mn  | Fe  | Co  | Ni  | Cu  | Zn    | Ga       | Ge       | As      | Se      | Br       | Kr       |
| 37        | 38       | 39 | 40  | 41  | 42      | 43  | 44  | 45  | 46  | 47  | 48    | 49       | 50       | 51      | 52      | 53       | 54       |
| Rb        | Sr       | Y  | Zr  | Nb  | Mo      | Tc  | Ru  | Rh  | Pd  | Ag  | Cd    | In       | Sn       | Sb      | Te      |          | Xe       |
| 55        | 56       |    | 72  | 73  | 74      | 75  | 76  | 77  | 78  | 79  | 80    | 81       | 82       | 83      | 84      | 85       | 86       |
| Cs        | Ba       |    | Hf  | Ta  | W       | Re  | Os  | Ir  | Pt  | Au  | Hg    | Tl       | Pb       | Bi      | Po      | At       | Rn       |
| 87        | 88       |    | 104 | 105 | 106     | 107 | 108 | 109 | 110 | 111 | 112   | 113      | 114      | 115     | 116     | 117      | 118      |
| Fr        | Ra       |    | Rf  | Db  | Sg      | Bh  | Hs  | Mt  | Ds  | Rg  | Cn    | Nh       | Fl       | Ms      | Lv      | Ts       | Og       |

#### **Sodium Sources**

- Sodium comes from various sources:
  - Fresh catalyst typically between 0.15-0.3 wt%
  - Feed deposits on the surface of catalyst particle
    - Does not migrate within the particle or to other particles



## **Sodium Effects**

- Na acts as a permanent catalyst poison
  - Neutralizes acid sites
  - Also forms a low melting point eutectic with vanadium to lower ecat activity and conversion
  - Activity loss exaggerated when ecat V and regen temps are also high
- FACT vs. Ecat Na 85 80 75 70 65 60 0 0.2 0.4 0.6 0.8 1 Ecat Na, wt%

Ca and K have similar effects

#### **Sodium Mitigation Strategies**

- Employ low-Na fresh catalyst
- Improve and optimize desalter operation remove Na from the feed
- Increase catalyst additions or use purchased catalyst to flush Na out of circulating inventory
- Increase fresh catalyst activity to combat activity loss from Na



#### **Elements of Concern**

1

D = BASF We create chemistry

2

Elements of high concern to be discussed in this presentation Elements of concern to be mentioned briefly in this presentation

| H        |          |    |     |     |     |     |     |     |     |     | ,   |          | ·        |         |         |          | He       |
|----------|----------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|---------|---------|----------|----------|
| 3<br>Li  | 4<br>Be  |    |     |     |     |     |     |     |     |     |     | 5<br>B   | 6<br>C   | 7<br>N  | 8<br>0  | 9<br>F   | 10<br>Ne |
| 11<br>Na | 12<br>Mg |    |     |     |     |     |     |     |     |     |     | 13<br>Al | 14<br>Si | 15<br>P | 16<br>S | 17<br>Cl | 18<br>Ar |
| 19       | 20       | 21 | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31       | 32       | 33      | 34      | 35       | 36       |
| K        | Ca       | Sc | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga       | Ge       | As      | Se      | Br       | Kr       |
| 37       | 38       | 39 | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49       | 50       | 51      | 52      | 53       | 54       |
| Rb       | Sr       | Y  | Zr  | Nb  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In       | Sn       | Sb      | Te      |          | Xe       |
| 55       | 56       |    | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81       | 82       | 83      | 84      | 85       | 86       |
| Cs       | Ba       |    | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | TI       | Pb       | Bi      | Po      | At       | Rn       |
| 87       | 88       |    | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113      | 114      | 115     | 116     | 117      | 118      |
| Fr       | Ra       |    | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh       | Fl       | Ms      | Lv      | Ts       | Og       |

21

#### **Elements of Concern: Iron**

BASF
We create chemistry

Elements of high concern to be discussed in this presentation
Elements of concern to be mentioned briefly in this presentation

| 1<br>H   |          | _        |           |           | /11.5 0   |           |           | 0001      |           |           | neny      |           | s pres    | ontai     |           |           | 2<br>He   |
|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 3<br>Li  | 4<br>Be  |          |           |           |           |           |           |           |           |           |           | 5<br>B    | 6<br>C    | 7<br>N    | 8<br>0    | 9<br>F    | 10<br>Ne  |
| 11<br>Na | 12<br>Mg |          |           |           |           |           |           |           |           |           |           | 13<br>Al  | 14<br>Si  | 15<br>P   | 16<br>S   | 17<br>Cl  | 18<br>Ar  |
| 19<br>K  | 20<br>Ca | 21<br>Sc | 22<br>Ti  | 23<br>V   | 24<br>Cr  | 25<br>Mn  | 26<br>Fe  | 27<br>Co  | 28<br>Ni  | 29<br>Cu  | 30<br>Zn  | 31<br>Ga  | 32<br>Ge  | 33<br>As  | 34<br>Se  | 35<br>Br  | 36<br>Kr  |
| 37<br>Rb | 38<br>Sr | 39<br>Y  | 40<br>Zr  | 41<br>Nb  | 42<br>Mo  | 43<br>Tc  | 44<br>Ru  | 45<br>Rh  | 46<br>Pd  | 47<br>Ag  | 48<br>Cd  | 49<br>In  | 50<br>Sn  | 51<br>Sb  | 52<br>Te  | 53<br>    | 54<br>Xe  |
| 55<br>Cs | 56<br>Ba |          | 72<br>Hf  | 73<br>Ta  | 74<br>W   | 75<br>Re  | 76<br>Os  | 77<br>Ir  | 78<br>Pt  | 79<br>Au  | 80<br>Hg  | 81<br>TI  | 82<br>Pb  | 83<br>Bi  | 84<br>Po  | 85<br>At  | 86<br>Rn  |
| 87<br>Fr | 88<br>Ra |          | 104<br>Rf | 105<br>Db | 106<br>Sg | 107<br>Bh | 108<br>Hs | 109<br>Mt | 110<br>Ds | 111<br>Rg | 112<br>Cn | 113<br>Nh | 114<br>Fl | 115<br>Ms | 116<br>Lv | 117<br>Ts | 118<br>Og |

22

#### **Iron Sources**

- Fe comes from various sources:
  - Fresh catalyst typically between 0.25-0.75 wt%
    - Incorporated within the silica/alumina framework → does NOT impact surface accessibility or side chemical reactions
  - Organic Fe from the feed
  - Inorganic Fe from equipment corrosion
- Refiners should focus on "Added Fe" which deposits on the catalyst surface

• 
$$Fe_{(Added)} = Fe_{(Ecat)} - Fe_{(Fresh)}$$





BASF
We create chemistry

#### **Iron Effects**

#### **Physical Effects**

- Surface nodule formation, which has been reported to cause catalyst circulation issues
- Vitrification on catalyst surface, loss in surface area



- Severe poisoning leads to surface blockage and reduced conversion and high slurry yield with non-BASF catalyst
  - Slurry density becomes unusually light due to uncracked feed

#### **Iron Effects**

#### **Chemical Effects**

- **Dehydrogenation**: some refiners have reported increased H<sub>2</sub> make
- Transfers S from reactor to regenerator for increased SOx
- Acts as a **CO promoter**: can be an issue in partial-burn units

## Iron Imaging: Iron deposits on the surface of the catalyst



old

- Fe deposits on the catalyst surface, with formation of very clear surface nodules.
- Old and new catalyst particles can be easily distinguished
- Dissimilar iron coating on each catalyst  $\rightarrow$  indicative of limited mobility from one catalyst particle to another.

## Fe Effects Case Study #1

- Resid unit in Middle East
  - Using non-BASF catalyst
  - Feed API: 16 19
  - Ecat Ni: 6200 ppm; Ecat V: 5100 ppm
- Added Fe increased from 0.23 to 0.43 wt%
- Resulted in a conversion loss of 4 vol%



## Fe Effects Case Study #2

- R2R unit in Asia Pacific
  - Feed API: 21 26
  - Ecat Ni: 2200 ppm
  - Ecat V: 2000 ppm
- Long history of using BASF catalyst since 2002

- Refiner started processing high-Fe feed
- Ecat Fe increased up to 1.3 wt% (or Added Fe of 0.7 wt%)
- Noticed change in color of the ecat around ~0.2 wt% added Fe

| Added Fe | on Ecat  |          |          |          |          | Contraction and the second second |
|----------|----------|----------|----------|----------|----------|-----------------------------------|
| 0 wt%    | 0.13 wt% | 0.21 wt% | 0.30 wt% | 0.45 wt% | 0.54 wt% | 0.70 wt%                          |
|          |          |          |          |          |          |                                   |

## Fe Effects Case Study #2



- Added iron increase from 0.15 to 0.70 wt% with no loss in unit conversion
- During the same period, other contaminants (Ni, V) decreased / stayed same



Result: No detrimental impact on unit conversion and yields at significantly high Added Fe

## **Iron Mitigation Strategies**

- Employ fresh catalyst with optimized surface porosity
- Increase catalyst additions or use purchased catalyst to flush Na out of circulating inventory

| Added Fe —             |                    |                      |
|------------------------|--------------------|----------------------|
| Surface Pores          | Minimal            | Optimized            |
| Diffusion of feed      | poor               | excellent            |
| Threshold to added Fe  | Low (e.g. 0.3 wt%) | High (e.g. >1.5 wt%) |
| Resulting liquid yield | low                | high                 |
|                        |                    |                      |

## Mitigation strategies should make sense!



Design of the catalyst passivation technology: passivator mobility should complement metal's mobility

| Metal    | Metal<br>mobility | Passivator<br>mobility | Passivator<br>technology                          |
|----------|-------------------|------------------------|---------------------------------------------------|
|          | Mobile            | Immobile               | REO or<br>separate<br>particle                    |
| N. J. J. | Immobile          | Immobile<br>Mobile     | Specialty<br>Alumina<br>Boron Based<br>Technology |

#### Mitigation Strategies – Boron-Based Technology (BBT)

- New BASF catalyst technology designed to passivate Ni
- Boron is mobile under FCC conditions and migrates to Ni on the catalyst





- BoroCat<sup>™</sup>: lower hydrogen, lower coke, higher liquid products
- Catalyst architecture modifications allow for dramatic alleviation of constraints

#### **Mitigation Strategies Summary**





| <b>Mitigation</b> | <b>Strategies</b> | Summary |
|-------------------|-------------------|---------|
|-------------------|-------------------|---------|

**D** - BASF We create chemistry

| Feed Metal | Deposition Method                                                                          | Primary Effect                                                              | Secondary Effect                                                                          | What to Watch for in the<br>Unit                                                                                                                         | Solutions                                                                                        |
|------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Vanadium   | Deposits evenly and<br>migrates in the<br>regenerator                                      | Permanent catalyst poison                                                   | Dehydrogenation agent                                                                     | <ul> <li>Increased H2 and coke production</li> <li>Decreased catalyst activity</li> </ul>                                                                | <ul><li>V-trap additive</li><li>Flush catalyst</li></ul>                                         |
| Sodium     | Deposits evenly and does not migrate                                                       | Permanent catalyst poison                                                   | Forms eutectic with<br>V                                                                  | <ul> <li>Decreased catalyst<br/>activity</li> </ul>                                                                                                      | <ul> <li>Flush catalyst</li> <li>Catalyst change</li> <li>Optimize desalter operation</li> </ul> |
| Nickel     | Deposits and binds<br>on the outside of the<br>particle. Does not<br>migrate               | Dehydrogenation<br>agent (creates coke<br>and H2)                           |                                                                                           | <ul> <li>Increased H2 and coke<br/>production</li> </ul>                                                                                                 | <ul><li>Antimony injection</li><li>Catalyst change</li><li>Flush catalyst</li></ul>              |
| Iron       | Deposits and binds<br>on the outside of the<br>particle. Low mobility<br>between particles | Creates nodules on<br>the surface of the<br>particle at very high<br>levels | Dehydrogenation<br>agent<br>CO promotion<br>Transfers S from<br>reactor to<br>regenerator | <ul> <li>Circulation issues and<br/>lower ABD</li> <li>Over-promotion in partial<br/>burn units</li> <li>Slightly increased SOx<br/>emissions</li> </ul> | <ul><li>Flush catalyst</li><li>Catalyst change</li></ul>                                         |

1



 $\gamma$ 

Elements of high concern to be discussed in this presentation
 Elements of concern to be mentioned briefly in this presentation

| H        |          |    |     |     |     |     |     |     |     |     |     |          |          |         |         |          | He       |
|----------|----------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|---------|---------|----------|----------|
| 3<br>Li  | 4<br>Be  |    |     |     |     |     |     |     |     |     |     | 5<br>B   | 6<br>C   | 7<br>N  | 8<br>0  | 9<br>F   | 10<br>Ne |
| 11<br>Na | 12<br>Mg |    |     |     |     |     |     |     |     |     |     | 13<br>Al | 14<br>Si | 15<br>P | 16<br>S | 17<br>Cl | 18<br>Ar |
| 19       | 20       | 21 | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31       | 32       | 33      | 34      | 35       | 36       |
| K        | Ca       | Sc | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga       | Ge       | As      | Se      | Br       | Kr       |
| 37       | 38       | 39 | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49       | 50       | 51      | 52      | 53       | 54       |
| Rb       | Sr       | Y  | Zr  | Nb  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In       | Sn       | Sb      | Te      |          | Xe       |
| 55       | 56       |    | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81       | 82       | 83      | 84      | 85       | 86       |
| Cs       | Ba       |    | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | TI       | Pb       | Bi      | Po      | At       | Rn       |
| 87       | 88       |    | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113      | 114      | 115     | 116     | 117      | 118      |
| Fr       | Ra       |    | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh       | Fl       | Ms      | Lv      | Ts       | Og       |



Elements of high concern to be discussed in this presentation

| 1<br>H   | Elements of concern to be mentioned briefly in this presentation |    |     |     |     |     |     |     |     |     |     |          |          |         | 2<br>He |          |          |
|----------|------------------------------------------------------------------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|---------|---------|----------|----------|
| - 3      | 4                                                                |    |     |     |     |     |     |     |     |     |     |          |          | 7       | 8       | 9        | 10       |
| Li       | Be                                                               |    |     |     |     |     |     |     |     |     |     |          |          | N       | 0       | F        | Ne       |
| 11<br>Na | 12<br>Mg                                                         |    |     |     |     |     |     |     |     |     |     | 13<br>Al | 14<br>Si | 15<br>P | 16<br>S | 17<br>Cl | 18<br>Ar |
| 19       | 20                                                               | 21 | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31       | 32       | 33      | 34      | 35       | 36       |
| K        | Ca                                                               | Sc | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga       | Ge       | As      | Se      | Br       | Kr       |
| 37       | 38                                                               | 39 | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49       | 50       | 51      | 52      | 53       | 54       |
| Rb       | Sr                                                               | Y  | Zr  | Nb  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In       | Sn       | Sb      | Te      |          | Xe       |
| 55       | 56                                                               |    | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81       | 82       | 83      | 84      | 85       | 86       |
| Cs       | Ba                                                               |    | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | TI       | Pb       | Bi      | Po      | At       | Rn       |
| 87       | 88                                                               |    | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113      | 114      | 115     | 116     | 117      | 118      |
| Fr       | Ra                                                               |    | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh       | Fl       | Ms      | Lv      | Ts       | Og       |









#### **Summary: Metals Contamination in FCC**

BASF

Metals are continuing to rise as we see increased resid processing as a global trend

Ni, V, Fe, and Na among the most detrimental, with Ca, K, Cu also of concern

Catalytically: employ catalyst designed for high metal applications including metal passivators, REO, and optimized surface porosity

Proper operational and catalytic mitigation strategies enable stable operation and profitability at the refinery

# **BASF** We create chemistry