TROUBLE SHOOTING IN DELAYED COKER UNIT-INSPECTION EXPERIENCE

Vipul Gupta Senior Engineer-Inspection, TS vipulgupta@mrpl.co.in

P Sujith DGM (TS-Inspection) <u>sujithp@mrpl.co.in</u>

TROUBLE SHOOTING IN DELAYED COKER UNIT

CONTENTS

• Introduction

Learning from :

- Coker Heater
- Coker Fractionator
- Coke drum Chute area
- Cutting deck piping & Small bore tapping's
- Summary and Discussion

MRPL's DCU DETAILS

- Licenser M/s Lummus Technology
- PMC- M/s EIL
- Contractor (CDSP) M/s Punj Lloyd
- Contractor (BOP) M/s TEIL
- Capacity 3.0 MMTPA
- Feed VR formed from distillation of Arab heavy Crude
- On-Stream Factor 8000 Hrs/yr (333.33 days)
- Turn Down 50 %
- Through put ratio: 1.10 (This is defined as the ratio of combined heater feed flow rate (including the internal recycle stream from the bottom of wash section) to the DCU fresh feed rate.
- Design feed TAN < 0.5

Learning from Coker Heater

Observations /analysis		Corrective measures		Feedback	
sa	2 instances of Bulging and agging of radiation section tubes ize: 114.3mm OD X 11.13mm	•	Replacement of tube sections beyond 5% enlargement in OD.	•	Online inspection is limited to Visual inspection
View State Advances of the	hk, MOC: 9Cr-1Mo (SA 335 Gr	•	RT carried out to check the extent of coke deposition at random	•	Off line inspection includes visual and dimensional check,
S AND ADDRESS	imensional measurement vealed bulging- <u>Photo</u>	•	locations Thickness measurement,		thickness & hardness measurements and RT for checking coke deposition.
William College & Co	ulging and sagging due to oking and localised heating.		Hardness check, visual and dimensional inspection	•	Additional no. of skin thermocouples.
Yang and Administration Liber Sheet Sciences and Sciences	letallurgical analysis of Samples f failed tubes				
m	esults indicate comparable etallurgical damage in bulged bes with 5% and more.				

Observations

Corrective measures

Analysis/Feedback

- Column opened for internal Coke deposits were inspection subsequent to heater charge pump flow issue. Blockage suspected. Sketch
- Coke deposits on bottom dish • end. Coke strainer observed damaged and partially blocked
- Overflow down pipes connected to chimney tray #1 sheared and were lying on the bottom dish end.
- Refractory damage approx 50% of the area on top of chimney tray#1. KAST-O-LITE 20 Photos

- removed and Strainer assembly was repaired
- Overflow down pipes were • fixed back as per the modified supporting. arrangement recommended by tray vendor.
 - Refractory repair work was carried out along with dry • out -Photos

- Damage to Coke strainer caused by damage to overflow down pipes which aggravated the coke deposition.
- Also, over flow down pipe damaged due to self weight and insufficient supporting.
- Efficient dry out procedures and special castable if any for use during shutdown?

Learning from Coke drum Chute area

Observations	Corrective measures	Analysis/Feedback	
 Coke drum chute is provided with a 19 mm thk abrasion resistant plate on top of concrete. Photo Failure of Chute plates of 2 nos. drums Plate material ABRAZO 400 by TATA Steel UK (Carbon steel with hard facing). 	chute plates and welding capping with hard facing electrodes.	 welding consumable / procedure No hard facing was performed on site 	

REFCON 17-20 Oct 2016

Learning from Small bore tapping's

Observations

•

Corrective measures

Analysis/Feedback Sort

- (1) Failure in Wet gas compressor 2nd Stage discharge 0.75" PG tapping **Photo**
 - Crack observed near the stiffener support to 0.75" pipe weld. upstream of isolation valve. MOC Carbon steel with PWHT
- (2) Stripper overhead line connected 0.75" PT tapping shear. MOC • Carbon steel with PWHT. Photo
- Circumferential through thickness crack all around the periphery resulting in shearing.

- Replacement of the failed Cause of failure is assemblies a n d modification of the existing supporting arrangement.
- Hardness values of failed sections were checked and found within acceptable limits
- No sign of internal or external corrosion in visual inspection and thickness survey
- Inspection of balance tappings and corrective action

mechanical fatigue due vibration

Learning from Antifoam lines

Observations

•

Corrective measures

- Repeated failures observed in Antifoam line connected to Coke drum. Line size 3" and MOC 9Cr-1Mo (SA335 Gr P9)
 - Failures were limited to common portion of the line used for supply of Antifoam • and top cooling water.
- During hydrotest after repair, leaks detected at multiple locations. All leaks were from cracks in the weld HAZ.
 - Higher hardness values were recorded at certain locations
 - Normal values also observed for few failed portions. <u>Photo</u>

- Replacement of the failed portions of the line. Minor pitting noticed
- Hardness check carried out for site welds.
- Radiography & re-PWHT

•

Re-examination of the joints was carried out after PWHT.

Analysis/Feedback Sort

- Analysis of failed pieces indicate that failures were due to combined effect of corrosion and vibration.
- Corrosion part is being studied further.
 - Few cases of improper PWHT also contributed to failures in presence of vibration.
- Modification for providing isolation valves on the drum nozzles for ease of maintenance in case of failure.

Learning from coke drum PSV line

Observations

•

٠

Corrective measures

- section of the piping.
 - Identification of reducers having similar heat nos.

Analysis/Feedback Sort

- Replacement of the failed | Probable cause of failure:-
 - \succ higher hardness of the fitting
 - > Higher hardness of weld
 - \succ Vibration related.
 - Feedback required on similar issues

- Coke drum connected 24" PSV • header has 2 nos. PSV's mounted for individual drums.
 - Crack observed on weld HAZ of Eccentric reducer (10"X12" SA 234 Gr WP9) connected to PSV outlet line.
- Circumferential through • thickness crack from 12 O'clock to 1 O'clock position on the 10" side of the reducer in HAZ of the reducer to flange weld.
 - No sign of external or internal corrosion. Higher hardness recorded on the reducer and both welds of the reducer - Photo

Summary & Discussion

- Coker Heater online monitoring techniques and acceptable limits of tube bulging ?
- Fractionator refractory repair frequency and dry out procedures ?
- Small bore tapping's Inspection techniques ?
- Coke drum connected lines support modification to contain vibration?
- Coke drum Laser Mapping and RVI frequency and any additional techniques used for inspection? <u>Link</u>

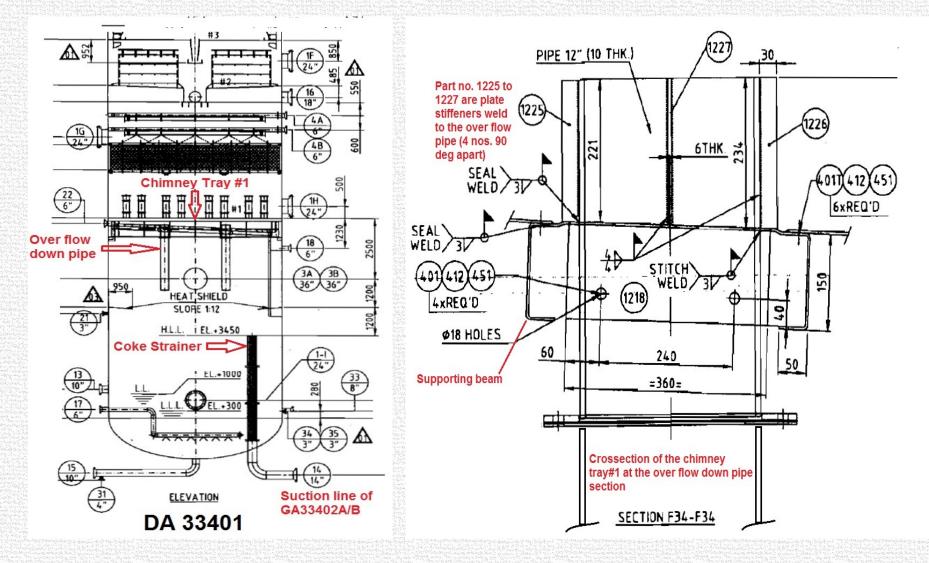
THANK YOU

vipulgupta@mrpl.co.in sujithp@mrpl.co.in

Learning from Coker Heater

REFCOM

MUMBAI


17-20 Oct 2016

REFCOM

MUMBAI

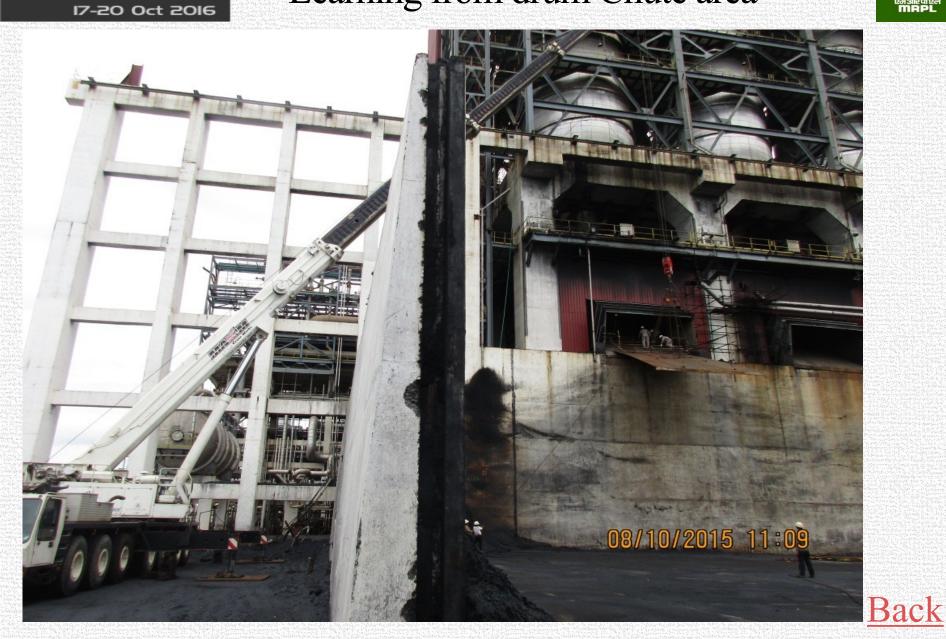
17-20 Oct 2016

Back

REFCOM

MUMBAI

17-20 Oct 2016



Learning from drum Chute area

REFCOM

MUMBAI

Learning from Antifoam lines

REFCON

MUMBAI

17-20 Oct 2016

Learning from Small bore tapping's

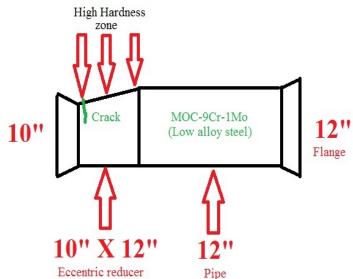
Back

REFCOMM MUMBAI 17-20 Oct 2016

Learning from Small bore tapping's

Learning from coke drum PSV line

Back



REFCOM

MUMBAI

17-20 Oct 2016

REFCOMM[®] 17-20 Oct 2016

•

Coke drum Inspection

Observations/Future Inspection plans

Feedback Required

- Coke Drum 9 Mtr ID and 41 Mtr Height MOC 1.25Cr-0.5Mo Base with SS410 Clad
- LASER Mapping and RVI carried out in September 2014 as a base line measurement for all 4 drums. No major abnormalities notices.
 - Second round of inspection in 2017.
 - Inspection of the Key Holes provided in the coke drum skirt to identify cracks is planned during upcoming shutdown.

- LASER mapping and RVI frequency for 24 hour cycle time ?
 - Finite element analysis to study thermal stresses using the temperature data of the drums along with other operational history?
 - Any other type of online/shutdown inspection to be performed for checking the integrity of the drums on regular basis?

