

SOLID

SRU-TGTU Analyzer Best Practices

RefComm Galveston 2016 Sulfur Recovery

SOLID

SOLID

AT-1 (Acid Gas)

 H_2S + Total Hydrocarbon (CO₂, H₂O, NH₃) (BTEX, MeOH)

O₂ Required to Burn Hydrocarbons Compared to an Equal Amount of H₂S

Compound	Moles O ₂ per Mole HC	Ratio of O_2 needed per mole HC compared to mole of H_2S
Methane	2	4
Ethane	3.5	7
Propane	5	10
Butane	6.5	13
Pentane	8	16
Hexane	9.5	19

SOLID

Field Data / HC Process Upset

SOLID

Feed Forward Analysis: Actual Control Response to Hydro-Carbons (Courtesy of Jacobs Comprimo)

Acid Gas Analyzer / Summary

- Benefits
 - For SRUs with TGTU: Mitigation of SO₂ breakthrough to the amine absorber...Its not when the HC comes that makes the problem, its when the HC goes away
- To be "ready" install a heated acid gas probe at shutdown

PERFORMANCE

SOLID

AT-4 (SRU Tail Gas)

 H_2S/SO_2 (COS, CS_2)

Ratio vs Excess H₂S vs Air Demand

- Ratio is the non linear expression of 2 H₂S / SO₂
- Excess H_2S is the linear expression of [H_2S] - 2[SO_2] = -1%...0...+1% H_2S
- Air Demand uses a scaling factor *AD*{2[SO2] - [H₂S] } = -5%...0...+5% AIR (*AD* factor is nominal 3.5)

Tail Gas: Efficiency as a Function of Excess Air

Tail Gas: Process Upset & Over-Range Event

SRU TAIL GAS ANALYSIS (Model 900 Air Demand Analyzer)

SOLID

SRU at Turndown

(slow response vs plugging)

COS & CS₂ in SRU Tail Gas

Putting the Analyzer in Control After Start-up

- "After start up when is the analyser put into control mode ?"
- Catalyst preference for H2S over SO2 can skew true air control.
- Sulphur Experts recommends control mode after 8 hours.

"Do you consider tail gas analysers to be reliable ?"

- Thankfully yes was common response
- Responses capture the evolution of the tail gas products.
- Time for a 3rd generation.

Tail Gas / Best Practices

Top of the Pipe Analyzer

SOLID

Insulated steam jacketed nozzle

www.ametekpi.com

Sample Line Analyzer 900 ADA

> Weather cover for ASR probe and jacket

Tail Gas Best Practices / Weather Protection

"Each 10C increase in operating temp above 25C reduces mean electronics component operating life by 50%"

PERFORMANCE

SOLID

Tail Gas "Sample Line" / Best Practices

Installed at 45° between Cd4 & RGG (bad piping design...good installation) Slope the sample line, no pockets

Tail Gas Analyzer / Summary

- Heat integrity at the sample point is paramount
 - Regulated MP steam is best, trapped LP if a must
 - Solve heat integrity problems with Conto-Trace (do not wrap tubing around a nozzle (which does not work)
- Observe the H₂S/SO₂ indicating outputs
 - They can give non predictive results
 - When the analyzer is moving...its working
- Connect the analyzer into the AIT data network

PERFORMANCE

SOLID

AT-5/6/7 (TGTU)

 H_2/H_2S (COS / SO_2)

SOLID

Analytical Measurements on a TGTU

- The critical (gas) measurements are <u>H₂ and H₂S</u>
- <u>COS</u> is a secondary measurement in combination with $H_2 + H_2S$
- <u>CS₂</u> for certain applications but COS considered more important
- \underline{SO}_2 can be measured at the quench inlet or outlet (not common)
- <u>pH</u> is measured in the quench water (not addressed here)

SOLID

Amine-Based Tail Gas Treating Unit

Ranges for H₂S/COS/CS₂ Location for H₂ Measurement

- Optimal analytical ranges
 - [H₂S] > [COS] > [CS₂] generally exist in < concentrations
 - Ranges subject to spectroscopy matrix, optimal ranges are;
 - H₂S 0-100 ppm (up to 0-500 ppm FSR depending on permit levels)
 - COS 0-200 ppm
 - CS₂ 0-50 ppm
- H₂ sample point location when there are 2 analyzers
 - Locate the H2 measurement at the Absorber outlet (slightly cleaner)
 - If using Flexsorb locate the H2 measurement at the Quench outlet

SOLID

HAG Particulate Filter After SO₂ TGTU Upset

SOLID

Low H₂ (TGTU) vs High SO₂ (Tail Gas)

www.ametekpi.com

PROCESS INSTRUMENTS

SOLID

TGTU (COS & H₂S) Steady State & Upset

TGTU Analyzer Summary

SOLID

- $A H_2 / H_2 S$ analyzer is critical to the operation of a TGTU
- When replacing a legacy H₂/H₂S analyzer add the COS/CS₂ measurements
- If there is a diverter valve have a "start up" sample point
- If there is an analyzer at both the Quench and Absorber outlet put a H₂ sensor at both locations
- This survey is based on~190 analyzers
 - Of which ~150 are at Abs outlet, ~35 at Quench outlet. ~5 at Quench inlet

SOLID

AT-8 (Emissions)

SO_2 SO_2 Mass Emission (H₂S, O₂, NOx)

Other Parameters

- SO₂
 - Dual range for TGTU bypass periods
- H₂S
 - Measurement of residual value after incineration (~10 ppm)
 - The part of EPA sub-part J(a) that was not promulgated
 - Accounting for un-combusted reduced S compounds by oxidizing the residual H₂S to SO₂
- O₂
 - Stand alone analyzer or on board with CEMS SO₂ analyzer
 - Combustion control can only be done with stand alone
- NOx
 - NOx values are low, not normally required

Emission Analyzers

- "The Color of Plumes"
 - White: Steam plume caused by water condensation (cold, Canada)
 - Bluish white: SO₃ plume usually caused by high SO₂ emissions
 - (....Confirmed by "<u>Green Slime</u>" in the CEMS sample system)
 - Orange: NO_x plume
 - Brown: Unburned hydrocarbon / soot plume
 - Green: Burning H₂S plume

AT-2 (O₂ / SRU Start up)

O₂ (CO, Combustibles)

Process Oxygen Measurement

- For start-ups and shut-downs of the SRU
 - Requires excess O₂ to near stochiometric conditions of 0.1% xs air
- Measurement typically done by operators using portable unit
 - Safety considerations: exposure of personnel during start up
 - SRU-TGTU tend to be all at one time and not in sequence
- A fixed (permanent) system can consist of;
 - Laser based "non contact" type analyzer (capable of sampling into "Claus" mode but shut-in after transition to "Claus" mode)
 - Isolated between start ups with "ASR" probes

SOLID

AT-3 (Sulfur Pit)

 $H_2S \ (\text{LEL}) \\ SO_2 \ (\text{Pyrophoric sulfur fire})$

Sulfur Pit Gas: Solubility of H₂S in Sulfur

- Produced sulfur has ~600 ppm of dissolved H₂S + hydrogenpolysulide
- Spontaneous degassing and concentration in the gas phase can increase to explosive levels (<u>3.25%</u>)
- Pit gas analyzer requires same sample integrity as tail gas analyzer
- H₂S is measured to warn of LEL, SO₂ is measured to warn of S-fire
- Used to quantify addition to emissions (Pit can be1/3rd or more of emissions)

IETEK®

PROCESS INSTRUMENTS

SOLID

Sulphur Pit High H₂S & SO₂ Values (Just prior to an incident)

Maintenance: Analyzer Categories

	Complexity Factor Category	Type of Analyzer	Estimated PM (h/month)
	1. (Simple)	pH, Conductivity, Gas Detection, O_2	2
	2.(Physical Property)	Boiling Point, Flash Point, Freeze Point, RVP, Viscosity	3
Outside	3.(Environmental)	CEMs SO ₂ , CO, Opacity, <mark>H₂S</mark>	2.5
ō	4.(Complex)	Tail Gas, GC, Mass Spec, NIR, FTIR, <u>H₂S</u>	4

Courtesy of Chevron ETC, Analyzer Engineering Group

PERFORMANCE

SOLID

