

CLEAR VISION SOUND STRATEGIES SOLID PERFORMANCE

On-Line Process Analyzers The Culture & Topical Issues Randy Hauer / Ametek Process Instruments Ryan Holgate / BP Cherry Pt Refinery

Agenda

Process Analytical Instrumentation ("PAI") Industry

- PAI portion of the entire Process Control Enterprise
- Analytical technologies, industry trends
- The profession, the culture, the engineering & sciences
- ATOP (Analyzer Technician Opportunity Program), ISA-AD

Case Studies

Two of the "Seven Deadly Sins" with case study examples

GLOBAL MARKETS FOR PROCESS ANALYTICAL INSTRUMENTS (PAI) 2014 to 2017

Analysis & Forecast of Global Markets for PAI Products & Services

© 2015 by PAI Partners, WALTON Associates, McMahon Technology Associates, and Tatera & Associates, Inc. Used by Permission

> AD 2015 60th Analysis Division Symposium Galveston, TX

www.pai-processanalyticalmarkets.com

PAI is a Significant Specialty Niche in the Global Process Control Enterprise

Cumulative value of Process Control Enterprise will exceed \$650 Billion during 2014 to 2017 (~163 billion / year)

PAI accounts for about 6% of this (~10 billion / year)

Comprised of spending by ALL market participants

- End users (70% of which is the Oil, Gas & CPI)
- Engineering Procurement Construction (EPC)
- Manufacturers of instrumentation, control systems, software, and related products and services
- Process control system integration (SI) specialists

PAI Historical Perspective

PAI implementation started in 1930s

- PAI developments require unique solutions for process applications
- PAI solutions often parallel lab developments

Microprocessor introduction in mid 1970s had enormous effect on PAI designs

- Computer intensive methods (FTIR, NIR, Raman)
- Integration with DCS and APC
- Onboard (remote) diagnostics to reduce lifetime costs

Outside resources (telecomm) producing recent advances

Tuneable Diode Array Laser Spectroscopy (TDLAS)

PAI Timeline

1930s	Thermal conductivity analyzer for CO2 by Hartmann and Braun (1929) Infrared absorption recorder developed by I.G. Farbenindustrie
	Commercial pH by Beckman
	Commercial optical emission spectrometer by ARL
1940s	Commercial UV/VIS by Beckman
	I.G. Farbenindustrie deploys 400 NDIRs, 15 Mag. Oxygen recorders during WWII
	PAI usage expands at US refineries and chemical plants
1950s	Process GCs developed by Union Carbide and Phillips
	Fixed filter UV/VIS photometers developed by DuPont
	Std. Oil of NJ Baton Rouge refinery is a major user of PAI
1960s	Real time computers (minicomputers) incorporated for data reduction
	FTIR becomes possible in labs but unreliable for on stream usage
	On stream TOC and TOD developed by Dow Midland

PAI Timeline

1970s	 First commercial NIR instrument announced at Illinois State Fair LSI Microprocessors enable computer intensive analysis methods—FTIR, NIR Dow deploys process MS for ethylene oxide process DuPont deploys NIR in chemical manufacturing 		
1980s	 PAI academic centers formed: CPAC, MCEC, CPACT (UK) Chemometrics applied to on stream data analysis 		
1990s	 Process NMR implemented by Texaco for refinery applications NeSSI GEN I for standardizing SHS substrates 		
2000s	 FDA introduces PAT/QbD initiative to improve pharma manufacturing On stream spectroscopy adopts rugged, low-cost telecom optical data transmission technology NeSSI GEN II integrates smart SHS with DCS 		
2010s	 Analyzer miniaturization The Photonics decade : rising influence of laser-based PAI 		

Global PAI Enterprise - 2014 to 2017

\$39 Billion (4 year Cumulative)

CPI Market Characteristics Choosing Products and Services

Use broad range of PAI products (no one company dominates)

- Conservative about adopting new technologies, especially during times of high project activity
- Plant operations decisions based on a mix of product-related and company-related attributes
 - High product reliability
 - Good (after sale) tech support
 - Easy to maintain
 - Low total cost of ownership
 - Attitudes about the supplier (honesty, application knowledge, existing relationships, support, etc.)

Capital project decisions are driven by competitive bidding mentality (Lowest 1st price) and this can drive "mis-applications"

CPI Market Characteristics Outlook for Services & Support

Maintenance continues as the largest expense component of the life-cycle cost equation

Activities (circa 2015) will focus on reliable operation of PAI installed base to support higher uptimes

Continuing reliance on off-site service orgs and modular replacements to deal with reduced staffing

Training will challenge maintenance organizations

- Impending retirement of veteran staff
- Changing skill sets for new technologies (e.g., laser spectroscopy, computers)
- Huge demand for analyzer technicians created by ACC's list of new chemical projects (plus hundreds of related projects in plastics, tires, iron & steel, etc.)

Challenges & Opportunities in Analyzer Technician Training

ATOP (Analyzer Technician Opportunities Program)

- To date 80 ATOP graduates (Lee & San Jacinto colleges) are employed
- ISA AD is continuing to support this program at Brazosport College
- <u>See Charlie Smith</u> for a copy of the National Sciences Foundation "Analyzer Technician Competency Model" (a 38 page synopsis)

Challenges at the Refinery Level

- Getting Analyzer Technicians acknowledged as a distinct tradecraft
- Premium pay scale to attract techs into a challenging field
- The gestation period to "home grow" an analyzer tech can be 5-10 years

Process Analyzer Profession Resources

- ISA Analysis Division
 - www.ADSymposium.org
 - An essential organization for your organization
 - Annual Symposium, 900 professionals, contact network
- Analyzer Technician Opportunities Project (ATOP)
 - www.analyzertech.org
 - Distance learning program developed by 2 Houston colleges
 - The necessary education to grow a lifetime skill set

The Big Picture of Process Analyzer Systems

Two of the "Seven Deadly Sins" with Supporting Case Studies

Grouping of Analyzer Categories for Maintenance Purposes

Со	mplexity Factor	Type of Analyzer	Estimated Man-hours/month Maintenance
1~5	Simple	pH, conductivity, gas detection, O_2	2
6~8	Physical Property	Boiling point, flash point, freeze point, RVP, viscosity, etc	3
9	Environmental	CEMs , SO ₂ , CO, <mark>H₂S</mark> , Opacity,	2.5
10~15	Complex	Tail gas, <mark>H₂S</mark> GC, NIR, FTIR, Mass Spec	4

Analyzer System Scope of Supply

Physical Laws that (mostly) Rule Analyzer World

The Four Laws of Thermodynamics

Newton's Law of Gravitation

Ficks's Law of Diffusion Langmuir Adsorption Isotherms Henry's Law for fractional surface coverage

Real World Laws that (also) Apply

Case Study 1 / Boiler O₂ Readings Why don't they match?

When a CEMS O_2 can NOT be used to validate a Process O_2 measurement:

- CEMS O₂ measures on a dry basis $\binom{0}{2dry} = \frac{100 * \%O_{2wet}}{(100 - \%H2O)}$
- CEMS tie in location is further downstream than Process tie in
- Different O₂ detection principles will not match under all conditions
 - i.e. ZrO₂ vs Paramag with combustible breakthrough

Case Study 2 / Moisture Analyzer Reformer Recycle Gas

Observations:

- Unstable readings
- Liquid Hydrocarbon condensing in line
- Particulate plugging flow
- Transport lag time calculated at 30 minutes

Moisture Analyzer in Reformer Recycle Gas

AMETEK[®] CLEAR VISION SOUND STRATEGIES SOLID PERFORMANCE

Q&A

Thank you for your time

Randy.hauer@ametek.com

Ryan.Holgate@bp.com

