On-Line Process Analyzers
The Culture & Topical Issues
Randy Hauer / Ametek Process Instruments
Ryan Holgate / BP Cherry Pt Refinery
Agenda

Process Analytical Instrumentation (“PAI”) Industry
- PAI portion of the entire Process Control Enterprise
- Analytical technologies, industry trends
- The profession, the culture, the engineering & sciences
- ATOP (Analyzer Technician Opportunity Program), ISA-AD

Case Studies
- Two of the “Seven Deadly Sins” with case study examples
GLOBAL MARKETS FOR PROCESS ANALYTICAL INSTRUMENTS (PAI) 2014 to 2017

Analysis & Forecast of Global Markets for PAI Products & Services

Used by Permission

AD 2015
60th Analysis Division Symposium
Galveston, TX

www.pai-processanalyticalmarkets.com
PAI is a Significant Specialty Niche in the Global Process Control Enterprise

Cumulative value of Process Control Enterprise will exceed $650 Billion during 2014 to 2017 (~163 billion / year)

PAI accounts for about 6% of this (~10 billion / year)

Comprised of spending by ALL market participants

- End users (70% of which is the Oil, Gas & CPI)
- Engineering Procurement Construction (EPC)
- Manufacturers of instrumentation, control systems, software, and related products and services
- Process control system integration (SI) specialists
PAI Historical Perspective

PAI implementation started in 1930s
- PAI developments require unique solutions for process applications
- PAI solutions often parallel lab developments

Microprocessor introduction in mid 1970s had enormous effect on PAI designs
- Computer intensive methods (FTIR, NIR, Raman)
- Integration with DCS and APC
- Onboard (remote) diagnostics to reduce lifetime costs

Outside resources (telecomm) producing recent advances
- Tuneable Diode Array Laser Spectroscopy (TDLAS)
PAI Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930s</td>
<td>- Thermal conductivity analyzer for CO2 by Hartmann and Braun (1929)</td>
</tr>
<tr>
<td></td>
<td>- Infrared absorption recorder developed by I.G. Farbenindustrie</td>
</tr>
<tr>
<td></td>
<td>- Commercial pH by Beckman</td>
</tr>
<tr>
<td></td>
<td>- Commercial optical emission spectrometer by ARL</td>
</tr>
<tr>
<td>1940s</td>
<td>- Commercial UV/VIS by Beckman</td>
</tr>
<tr>
<td></td>
<td>- I.G. Farbenindustrie deploys 400 NDIRs, 15 Mag. Oxygen recorders during WWII</td>
</tr>
<tr>
<td></td>
<td>- PAI usage expands at US refineries and chemical plants</td>
</tr>
<tr>
<td>1950s</td>
<td>- Process GCs developed by Union Carbide and Phillips</td>
</tr>
<tr>
<td></td>
<td>- Fixed filter UV/VIS photometers developed by DuPont</td>
</tr>
<tr>
<td></td>
<td>- Std. Oil of NJ Baton Rouge refinery is a major user of PAI</td>
</tr>
<tr>
<td>1960s</td>
<td>- Real time computers (minicomputers) incorporated for data reduction</td>
</tr>
<tr>
<td></td>
<td>- FTIR becomes possible in labs but unreliable for on stream usage</td>
</tr>
<tr>
<td></td>
<td>- On stream TOC and TOD developed by Dow Midland</td>
</tr>
<tr>
<td>Decade</td>
<td>Events</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 1970s | - First commercial NIR instrument announced at Illinois State Fair
| | - LSI Microprocessors enable computer intensive analysis methods—FTIR, NIR
| | - Dow deploys process MS for ethylene oxide process
| | - DuPont deploys NIR in chemical manufacturing |
| 1980s | - PAI academic centers formed: CPAC, MCEC, CPACT (UK)
| | - Chemometrics applied to on stream data analysis |
| 1990s | - Process NMR implemented by Texaco for refinery applications
| | - NeSSI GEN I for standardizing SHS substrates |
| 2000s | - FDA introduces PAT/QbD initiative to improve pharma manufacturing
| | - On stream spectroscopy adopts rugged, low-cost telecom optical data transmission technology
| | - NeSSI GEN II integrates smart SHS with DCS |
| 2010s | - Analyzer miniaturization
| | - The Photonics decade: rising influence of laser-based PAI |
Global PAI Enterprise - 2014 to 2017

$39 Billion (4 year Cumulative)
CPI Market Characteristics
Choosing Products and Services

Use broad range of PAI products (no one company dominates)

Conservative about adopting new technologies, especially during times of high project activity

Plant operations decisions based on a mix of product-related and company-related attributes

- High product reliability
- Good (after sale) tech support
- Easy to maintain
- Low total cost of ownership
- Attitudes about the supplier (honesty, application knowledge, existing relationships, support, etc.)

Capital project decisions are driven by competitive bidding mentality (Lowest 1st price) and this can drive “mis-applications”
CPI Market Characteristics
Outlook for Services & Support

Maintenance continues as the largest expense component of the life-cycle cost equation

Activities (circa 2015) will focus on reliable operation of PAI installed base to support higher uptimes

Continuing reliance on off-site service orgs and modular replacements to deal with reduced staffing

Training will challenge maintenance organizations

- Impending retirement of veteran staff
- Changing skill sets for new technologies (e.g., laser spectroscopy, computers)
- Huge demand for analyzer technicians created by ACC’s list of new chemical projects (plus hundreds of related projects in plastics, tires, iron & steel, etc.)

www.ametek.com
Challenges & Opportunities in Analyzer Technician Training

ATOP (Analyzer Technician Opportunities Program)
- To date 80 ATOP graduates (Lee & San Jacinto colleges) are employed
- ISA AD is continuing to support this program at Brazosport College
- See Charlie Smith for a copy of the National Sciences Foundation “Analyzer Technician Competency Model” (a 38 page synopsis)

Challenges at the Refinery Level
- Getting Analyzer Technicians acknowledged as a distinct tradecraft
- Premium pay scale to attract techs into a challenging field
- The gestation period to “home grow” an analyzer tech can be 5-10 years

www.ametek.com
Process Analyzer Profession Resources

• ISA Analysis Division
 – www.ADSymposium.org
 – An essential organization for your organization
 – Annual Symposium, 900 professionals, contact network

• Analyzer Technician Opportunities Project (ATOP)
 – www.analyzertech.org
 – Distance learning program developed by 2 Houston colleges
 – The necessary education to grow a lifetime skill set
The Big Picture of Process Analyzer Systems

Two of the “Seven Deadly Sins” with Supporting Case Studies
Grouping of Analyzer Categories for Maintenance Purposes

<table>
<thead>
<tr>
<th>Complexity Factor</th>
<th>Type of Analyzer</th>
<th>Estimated Man-hours/month Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1~5</td>
<td>pH, conductivity, gas detection, O<sub>2</sub></td>
<td>2</td>
</tr>
<tr>
<td>6~8</td>
<td>Boiling point, flash point, freeze point, RVP, viscosity, etc</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>CEMs, SO<sub>2</sub>, CO, H<sub>2</sub>S, Opacity</td>
<td>2.5</td>
</tr>
<tr>
<td>10~15</td>
<td>Tail gas, H<sub>2</sub>S GC, NIR, FTIR, Mass Spec</td>
<td>4</td>
</tr>
</tbody>
</table>
Analyzer System Scope of Supply
Physical Laws that (mostly) Rule Analyzer World

The Four Laws of Thermodynamics

Newton’s Law of Gravitation

Ficks’s Law of Diffusion
Langmuir Adsorption Isotherms
Henry’s Law for fractional surface coverage
Real World Laws that (also) Apply

Pareto
- Pareto’s Law
- 20% of the system will cause 80% of the problems

Murphy
- Murphy’s Law (and corollaries)
- Anything that can go wrong – will (at the worst possible time)
- Chaos always wins because it is better organized

Heinlein
- Heinlein’s Law (paraphrased)
- Never ascribe to bad design what can be explained by stupidity, but don’t rule out bad design
Case Study 1 / Boiler O₂ Readings
Why don’t they match?

When a CEMS O₂ can NOT be used to validate a Process O₂ measurement:

- CEMS O₂ measures on a dry basis
 \[
 \%O_{2\text{dry}} = \frac{100 \times \%O_{2\text{wet}}}{(100 - \%H₂O)}
 \]

- CEMS tie in location is further downstream than Process tie in

- Different O₂ detection principles will not match under all conditions
 - i.e. ZrO₂ vs Paramag with combustible breakthrough
Case Study 2 / Moisture Analyzer
Reformer Recycle Recycle Gas

Observations:
- Unstable readings
- Liquid Hydrocarbon condensing in line
- Particulate plugging flow
- Transport lag time calculated at 30 minutes

www.ametek.com
Moisture Analyzer in Reformer Recycle Gas

Effect

- Lag time reduced to 60 sec
- Hydrocarbon Dew Point Decreased
- Particulate Plugging Eliminated
- Decreased moisture adsorption and desorption

www.ametek.com
Q&A

Thank you for your time

Randy.hauer@ametek.com

Ryan.Holgate@bp.com