DCU Process Control

Protecting Critical Investments & Optimizing Process Control with Advanced Temperature Measurement Systems

Walter Tijmes
Vice President – Sales & Technology
Daily Thermetrics
a division of Daily Instruments Corp.

© Daily Instruments Corporation. All Rights Reserved. Any unauthorized distribution or disclosure is prohibited.
AGENDA

I. Introduction to Daily Thermetrics

II. DCU Applications
 I. Thermowells
 II. Coke Drum Skin Temperature
 III. DCU Furnace Tubes
 IV. Advanced Fractionator Profiling

© Daily Instruments Corporation. All Rights Reserved. Any unauthorized distribution or disclosure is prohibited.
DAILY THERMERTICS

Since 1973
Global Headquarters & Manufacturing in Houston, TX

ISO 9001:2008 CERTIFIED QUALITY ASSURANCE

© Daily Instruments Corporation. All Rights Reserved. Any unauthorized distribution or disclosure is prohibited.
3 Critical Criteria for HIGH PERFORMANCE Thermometry

SENSOR AVAILABILITY
Is there sufficient quantity of sensors to properly troubleshoot, plan, and justify future investment?

SENSOR ACCURACY
Does the sensor provide the highest level of confidence of the actual reaction temperature?

SENSOR RELIABILITY
Does the sensor’s life represent a maintenance cost or a long term investment?
Thermowell Challenges
Coke Build-Up & High Polish

Machine Finish
32-84 RMS

Polished Finish
4-8 RMS

© Daily Instruments Corporation. All Rights Reserved. Any unauthorized distribution or disclosure is prohibited.
High Hardness TWs: Erosive Conditions

Feed Lines

- Coke fines and particulate promote an erosive environment, creating accelerated wear on internal components, specifically thermowells
 - Reduced temperature visibility
 - Safety concerns when primary seal is breached
- Proper metallurgical selections can mitigate this degradation process to extend the working life of thermowells and temperature sensors through extended runs
High Hardness TWs: Options
Coating Methods & Solid Tip

• Spray and Fuse
• Welded Overlay
 • Tungsten Inert Gas (TIG)
 • Plasma Transfer Arc (PTA)
 • Laser Cladding
• Solid Barstock
Importance of Temperature

<table>
<thead>
<tr>
<th>Location</th>
<th>Temperature Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coke Drum</td>
<td>- Detect thermal effects of cycling on the drum</td>
</tr>
<tr>
<td>- Drum Wall</td>
<td>- Detect premature coking before injection</td>
</tr>
<tr>
<td>- Feed Lines</td>
<td></td>
</tr>
<tr>
<td>Coker Heater</td>
<td>- Proactively detect coke buildup</td>
</tr>
<tr>
<td>- Tube Skin</td>
<td>- Maximize Tube End of Life</td>
</tr>
<tr>
<td>- Inlet/Outlet Lines</td>
<td>- Optimize Energy Use</td>
</tr>
<tr>
<td>Coker Fractionator</td>
<td>- Tight control on cuts</td>
</tr>
<tr>
<td>- Inlet/Outlet</td>
<td>- Monitor distribution</td>
</tr>
<tr>
<td>- Cut Points</td>
<td>- Detect coke buildup</td>
</tr>
<tr>
<td>- Downcomers/Trays</td>
<td></td>
</tr>
<tr>
<td>- Distributor Header/Packing</td>
<td></td>
</tr>
</tbody>
</table>
WELD & BOLT Surface Sensor Pads

Conventional Designs for Coke Drum Monitoring

Vessel Skin Sensors Designed for Maximum Acquisition Savings

Requires Successive Welding Each Time Sensor Fails
VSS™ Weld Once: Interchangeable

Engineered Solutions for Vessel Skin Surfaces

WELD PAD: Welded during vessel fabrication.

INSULATION INSERT: Designed to extend to the exterior of insulation.

SPRING COMPONENT

THERMOCOUPLE
VSS™ MAGNETIC: NO WELD Sensor

DCU: Coke Drum Monitoring

Spring Loaded
Easily Replaceable TC

Remote Mount Head Only
(not shown)

Patent-Pending

Specially Engineered Magnet
Rated to 1004°F
Continuous Operation!
VSS™ MAGNETIC: NO WELD Sensor

DCU: Coke Drum Monitoring
VSS – Banded Ski Slope:
Coke Drum Inlet Monitoring
Surface Temperature Measurement

- Process Pipelines
 - In a further effort to proactively detect early coking, pipeclamps with multiple concentric sensing locations can help detect coking on the coker inlet pipe
Importance of Temperature

<table>
<thead>
<tr>
<th>Location</th>
<th>Temperature Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coke Drum</td>
<td>- Detect thermal effects of cycling on the drum</td>
</tr>
<tr>
<td>- Drum Wall</td>
<td>- Detect premature coking before injection</td>
</tr>
<tr>
<td>- Feed Lines</td>
<td></td>
</tr>
<tr>
<td>Coker Heater</td>
<td>- Proactively detect coke buildup</td>
</tr>
<tr>
<td>- Tube Skin</td>
<td>- Maximize Tube End of Life</td>
</tr>
<tr>
<td>- Inlet/Outlet Lines</td>
<td>- Optimize Energy Use</td>
</tr>
<tr>
<td>Coker Fractionator</td>
<td></td>
</tr>
<tr>
<td>- Inlet/Outlet</td>
<td>- Tight control on cuts</td>
</tr>
<tr>
<td>- Cut Points</td>
<td>- Monitor distribution</td>
</tr>
<tr>
<td>- Downcomers/Trays</td>
<td>- Detect coke buildup</td>
</tr>
<tr>
<td>- Distributor Header/Packing</td>
<td></td>
</tr>
</tbody>
</table>
DCU: Furnace Tube Skin TI

Engineered Solutions

KNIFE-EDGE™ TIP with optional Heat Shield

SLOTTED SQUARE PAD with optional Heat Shield

TUBE SKIN ENGINEERING

A DIVISION OF DAILY THERMETERS

EZ-PAD™ REPLACEABLE with optional Heat Shield

"EXTRACTABLE PROBE" PAD with optional Heat Shield

© Daily Instruments Corporation. All Rights Reserved. Any unauthorized distribution or disclosure is prohibited.
DCU: Furnace Tube Skin TI

Engineered Solutions

- SENSOR TYPE
- SHEATH OUTSIDE DIAMETER
- SENSOR TIP SELECTION
- SENSOR WIRE TRANSITION DESIGN
- HEAT SHIELD
- SENSOR ENTRY LOCATION
- PROCESS TUBE THERMAL COOLING

- PROCESS TUBE SCALING
- FLUE GAS COMPOSITION
- SENSOR CONDUCTOR WIRE DIAMETER
- POSITIVE CONTACT WITH PROCESS TUBE
- ROUTING OF SHEATH
- SHEATH MATERIAL
- JUNCTION TYPE
- SHEATH WALL THICKNESS
- THERMAL EXPANSION
- SHEATH ROUTING CLIPS
TUBE SKIN THERMOCOUPLE FAILURES

Improper Design
TUBE SKIN THERMOCOUPLE FAILURES

Lack of Professional Installation

© Daily Instruments Corporation. All Rights Reserved. Any unauthorized distribution or disclosure is prohibited.
Routing – Bottom Side Entry
DCU: Furnace Tube Skin TI
Engineered Solutions

Routing – Bottom Direct Entry
Routing – Side Entry
DCU: Furnace Tube Skin TI

Expansion Bends
TUBE SKIN THERMOCOUPLE APPROACH
Engineered Solutions for Heaters, Furnaces, & Boilers

APPLICATION Based Approach

1. Identify Heater process type and design
2. Gather Data, Run Diagnostics and Analyze Temperature Trends
3. Design/Re-Design based on accumulated Data
4. Supervise Installation by experienced Heater Specialists

4-Step Approach
Importance of Temperature

<table>
<thead>
<tr>
<th>Location</th>
<th>Temperature Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coke Drum</td>
<td>-Detect thermal effects of cycling on the drum</td>
</tr>
<tr>
<td>-Drum Wall</td>
<td>-Detect premature coking before injection</td>
</tr>
<tr>
<td>-Feed Lines</td>
<td></td>
</tr>
<tr>
<td>Coker Heater</td>
<td>-Proactively detect coke buildup</td>
</tr>
<tr>
<td>-Tube Skin</td>
<td>-Maximize Tube End of Life</td>
</tr>
<tr>
<td>-Inlet/Outlet Lines</td>
<td>-Optimize Energy Use</td>
</tr>
<tr>
<td>Coker Fractionator</td>
<td>-Tight control on cuts</td>
</tr>
<tr>
<td>-Inlet/Outlet</td>
<td>-Monitor distribution</td>
</tr>
<tr>
<td>-Cut Points</td>
<td>-Detect coke buildup</td>
</tr>
<tr>
<td>-Downcomers/Trays</td>
<td></td>
</tr>
<tr>
<td>-Distributor Header/Packing</td>
<td></td>
</tr>
</tbody>
</table>
Coker Fractionator: Example
Coker Fractionator: Example

CatTracker® Thermometry Systems
DCU Fractionator: Downcomer Section

CatTracker® Multipoint Technology

Snug/Not fixed fitting

Plunger & Packing protect process bypass
DCU Fractionator: Example

Components
DCU Fractionator: Structured Packing

CatTracker® Multipoint Technology
TI can profile *under* distributor head

TI can profile *under* or *in* the wash bed
Delayed Coking Unit
3 Critical Criteria for HIGH PERFORMANCE Thermometry

SENSOR AVAILABILITY
Is there sufficient quantity of sensors to properly troubleshoot, plan, and justify future investment?

SENSOR ACCURACY
Does the sensor provide the highest level of confidence of the actual reaction temperature?

SENSOR RELIABILITY
Does the sensor’s life represent a maintenance cost or a long term investment?
DCU Process Control

Protecting Critical Investments & Optimizing Process Control with Advanced Temperature Measurement Systems

Walter Tijmes
Vice President – Sales & Technology
Daily Thermetrics
a division of Daily Instruments Corp.