

New and Old Equations Tie Together 75 Years of FCC Standpipe Experience

> Phillip K. Niccum Kellogg Brown & Root LLC Houston, Texas, USA

> E-mail: phillip.niccum@kbr.com Office phone: 713-753-5339 Cell phone: 713-859-8768

75 Years of FCC Standpipe Experience

Presentation Outline

- Framing the standpipe problem
- Standpipe performance issues
- Actual and apparent density
- Where aeration goes
- Theoretical aeration rates
- Different aeration mediums
- Catalyst properties
- Available tools
- Commercial examples

Niccum, P.K., Update on the catalytic cracking process and standpipes—Parts 1 & 2, Hydrocarbon Processing, March & April, 2015

Invention of Fluid Solids Standpipe

КВА

FCC Demonstration Plant in 1940

Invention of Fluid Solids Standpipe

квр

1942 - First Commercial FCC Unit

Idealized Fluid Solids Standpipe

Recognizing Standpipe Performance Issues

- Symptoms of Standpipe Problems
 - Low or erratic standpipe pressure build-up
 - Over-sensitivity to changes in FCC unit operating conditions or catalyst physical properties.
- Common Problem Areas
 - Standpipe inlet design
 - Standpipe geometry
 - Standpipe aeration
 - Catalyst issues
- Not Standpipe Problems
 - Riser pressure drop is high
 - Reactor Regenerator pressure differential is limiting
 - Required catalyst circulation rate has increased

Frictional Forces Offset Static Head

Minimum Fluidization Density: 41.0 lb/ft3, Loose Settled Density: 45.2 lb/ft3, Packed Density: 50 lb/ft3 John Matsen, "Some Characteristics of Large Solids Circulation Systems", Fluidization Technology, 1976

ква

We Deliver

Actual vs. Apparent Standpipe Density

Actual density is not apparent from $\Delta P/\Delta L$

Minimum Fluidization Density: 45 lb/ft3, Loose Packed Density: 45 lb/ft3, Packed Density: 50 lb/ft3

We Deliver

John Matsen, "Some Characteristics of Large Solids Circulation Systems", Fluidization Technology, 1976

Simplified Solids and Gas Modeling

кве

We Deliver

Separate Phases Mixed Phase $(Density = \rho)$ $(Density = \rho)$ **Bubble** Phase Phase **Phase** (Density = 0)Emulsion Bubble **Emulsion** Phase (Density = ρ_0)

Phase Parameters – Without Slip

Derived from simple mass/volume balances

	Mixed Phase	Bubble Phase	Emulsion Phase
Phase Density	ρ	0	ρο
Phase Voidage	$1 - \rho/\rho_s$	1	$1 - \rho_o / \rho_s$
Phase Fraction	1	1-ρ/ρ _ο	ρ/ρ _o
Phase Velocity	w/p	w/p	w/p

Phase Parameters – With Slip

We Deliver

Derived from simple mass/volume balances

	Bubble Phase	Emulsion Phase	
Phase Fraction	1-ρ/ρ _ο	ρ/ρ _o	
Phase velocity	$w/\rho + U_b$	w/p	
Contribution to Gas SVV	$(w/\rho + U_b) (1 - \rho/\rho_o)$	w (1/ρ _o - 1/ρ _s)+U _o ρ/ρ _o	
Total SVV, U_t w (1/ ρ - 1/ ρ_s) + U_b (1- ρ/ρ_o) + $U_o \rho/\rho_o$			

U_b – Relative Bubble Rise Velocity, U_o – Minimum Fluidization Velocity KBQ

Density as a Function of U_t and Mass Flux

$$U_{t} = U_{b} \left(1 - \frac{\rho}{\rho_{o}} \right) + w \left(\frac{1}{\rho} - \frac{1}{\rho_{s}} \right) + U_{o} \frac{\rho}{\rho_{o}}$$

$$\mathbf{\rho}^{2} + \mathbf{\rho} \left[\frac{(U_{t} - U_{b} + w/\rho_{s})}{(U_{b} - U_{o})} \rho_{o} \right] - \frac{w \rho_{o}}{(U_{b} - U_{o})} = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic equation can yield two roots

Velocity of Emulsion Phase

The emulsion phase always travels down

13

(BR We Deliver

Velocity of Bubble Phase

The bubble phase can travel up or down

SVV Contribution from Emulsion Phase

15

SVV Contribution from Bubble Phase

КВА

We Deliver

Total SVV Through Standpipe

Sum of emulsion and bubble phase contributions

Density in Gas Upflow Standpipe

Gas velocity increases as the gases move up

Density in Gas Downflow Standpipe

Without aeration, gas slows as it moves down

Density in Gas Downflow Standpipe

Based on $U_b = 3.5 fps$

Derived from equations to keep U_t constant

$$\Delta R = U_t A \left(\frac{520}{T + 460}\right) \times \left(\frac{\rho \Delta L}{144 \times 14.7}\right)$$
$$U_t = U_b \left(1 - \frac{\rho}{\rho_o}\right) + w \left(\frac{1}{\rho} - \frac{1}{\rho_s}\right) + U_o \frac{\rho}{\rho_o}$$

Theoretical Aeration Rate

KBR

We Deliver

$$\frac{\Delta R}{\Delta L} = \frac{A 520 \rho \left[U_{b} \left(1 - \frac{\rho}{\rho_{o}} \right) + w \left(\frac{1}{\rho} - \frac{1}{\rho_{s}} \right) + U_{o} \frac{\rho}{\rho_{o}} \right]}{2116 (T + 460)}$$

$$\frac{\Delta R}{\Delta L} = \frac{A 520 \rho \times w \left(\frac{1}{\rho} - \frac{1}{\rho_{s}} \right)}{2116 (T + 460)}$$
Simplified Equation
Ignoring Slip

Theoretical Aeration Rates at 37 lb/ft³

Required to maintain constant SVV and density

Standpipe Inlet

Good fluidization at inlet is of prime importance

- Feed Standpipe Well Fluidized Catalyst
 - Draw catalyst from a well fluidized area of bed
 - Disengage excess bubbles
 - Target desired standpipe density
- Inlet Types
 - Hole in the bottom head of vessel
 - Internal hopper
 - Externally fluidized side-draw hoppers

Impact of Aeration Medium

Based on a 70 micron FCC catalyst particle

Impact of Aeration Medium

Based on representative FCC catalyst at 1150 °F

Impact of Aeration Medium

Based on a representative FCC catalyst at 1150 °F

Conclusion: Impact of Aeration Medium

- Air or Nitrogen

 Best Aeration Mediums
- Steam
 - Not as effective as air
 - Condensation complicates application
- Hydrocarbons
 - Low gas viscosity makes hydrocarbons ineffective as aeration mediums
- Hydrogen
 - Low gas viscosity and very low density makes hydrogen a very ineffective aeration medium

Based on three indicators

Impact of Fines, D_P and Density

Based on MSER changes over range of interest

Fraction < 45	MSER	<u>Particle</u>	MSER
<u>microns</u>	<u>% of base</u>	<u>Density, g/cc</u>	<u>% of base</u>
0.20	103.2	0.80	102.9
0.15	102.4	0.83	102.1
0.10	101.6	0.86	101.4
0.05	100.8	0.89	100.7
0.00	100.0	0.92	100.0

D	p, microns	
	65	104.8
	70	103.5
	75	102.2
	80	101.1
R	85 We Deliver	100.0

Conclusion

 All three
 parameters are
 important

Simplified Fluidization Factors

Based on E-cat data from 15 FCC units

Available Tools

For diagnosing standpipe issues

- Pressure Profile Data
 - Single gauge pressure surveys
 - DCS data print-outs and trends
 - High speed multipoint data recordings
- Aeration and Fluidization Gas Rate Trials
- Computational Fluid Dynamic (CFD) and Cold Flow Modelling Studies
- Gamma Ray Scans

Example 1: Geometric Gas Trap

Preventing upward migration of bubbles

We Deliver

58 Inch ID 1.9 fps Solids Velocity 80 lb/ft²s Mass Flux

35.5 Inch ID 5.4 fps Solids Velocity 227 lb/ft²s Mass Flux

Bubble held stationary by down-flowing solids

45.5 Inch ID 3.1 fps Solids Velocity 129 lb/ft²s Mass Flux

Example 2: Geometric Trap

Preventing bubble migration

- Vertical Section
 - Catalyst drags bubbles down
- Inclined Section
 - Catalyst slides down under rising bubbles
- Process Dynamic

We Deliver

- Bubbles accumulate in bend until catalyst circulation is reduced enough that the bubble finally vents upward
- The process then repeats itself

Example 3: Data Analysis

Clues from 80 ft standpipe

- Located the Origin of Trouble
 - Loss of standpipe DP started with high DP in the hopper
- Used Feedback to Guide Optimization
 - Changed aeration and fluidization gas rates
 - Changed fluid bed levels
 - Mechanical modifications improved fluidization around hopper
 - More changes to aeration and fluidization gas rates

KBR We Deliver

Example 3: Results

Standpipe Characteristics

- 25 inch ID
- 136 lb/ft2s

We Deliver

 80 ft total length from hopper to slide valve

J		<u> </u>
Pressure Delta		Apparent
Measurement	DP,	Density,
Locations (Δ L)	psi	lb/ft3
Hopper (7 ft)	1.8	36.3
SP Top (14 ft)	3.5	36.9
Upper SP (14 ft)	3.6	35.9
Middle SP (14 ft)	3.9	41.5
Lower SP (14 ft)	4.1	42.0
SP Bottom (14 ft)	4.8	50.3
Total Standpipe (70 ft)	20.6	42.3
	-	ZEK

After optimization and mechanical changes

Example 4: Change of Aeration Medium

Air replaces steam

- History of Regenerated Catalyst Standpipe
 - Steam used for aeration
 - Pressure build-up erratic
 - Efforts to optimize rates and ensure dry steam provided little improvement
 - Resisted recommendations to switch from steam to air
- Change Made to Air for Standpipe Aeration
 - Improvement in standpipe pressure build-up and stability were immediate and marked

Example 5: Upgrading Aeration System

Applying theoretical aeration rates

Example 5: Upgrading Aeration System

Applying theoretical aeration rates

BR We Deliver

38

Example 6: Optimizing Aeration Rates

Empirical optimization leads to solution

Before

- 24 lb/ft3 apparent density
- Erratic pressure build-up
- High vibration
- After
 - 35 lb/ft3 apparent density
 - Steady pressure build-up
 - Little vibration
- Standpipe Design Data
 - ID: 20 Inches
 - Mass Flux: 217 lb/ft2s

Stay Positive – Get Started

- Recognize the Root of the Problem
 - Consider issues upstream and downstream of the standpipe
 - Is the standpipe really to blame?
- Compare Historic vs. Recent Catalyst and Operating Data
- Apply Available Tools
 - Tabulate pressure data
 - Perform aeration trials
 - CFD and cold flow modeling
 - Gamma ray scans

Conclusions

- Standpipe Performance Can Be Improved
 - Cat must be fluidized before entering standpipe
 - Standpipe sizing / geometry must not trap gas
 - Aeration must be correctly applied
 - Catalyst properties should support fluidization
- Empirical Optimization is Required
 - Guided by feedback from trials and unit modifications in addition to theory
- Quick Success is Less Common than Success Following Months of Focused Work
 - And maybe some unit modifications

New and Old Equations Tie Together 75 Years of FCC Standpipe Experience

> Phillip K. Niccum Kellogg Brown & Root LLC Houston, Texas, USA

E-mail: phillip.niccum@kbr.com Office Phone: 713-753-5339 Cell Phone: 713-859-8768