DCU Bolting: A Galling Prevention Case Study at Tesoro Golden Eagle

Presented by:

Kalani Cobb – Maintenance Supervisor Tesoro
(Kalani.J.Cobb@tsocorp.com)

Michael J Psimas, PhD – BlackHawk Engineered Products
(mpsimas@integratechnologies.com)
Outline

• Basics of galling
 • Definition & importance
 • Process & mechanisms

• Possible solution paths
 • One option for avoidance
 • How it works

• Case study
 • Background & application details
 • Scope & results
What is galling?

• Definition
 • Material wear during sliding
 • Macroscopic transfer of material
 • Driven by adhesion

• In practice
 • Everyone has encountered it
 • Stuck nuts and studs
 • Act as one part
 • Normally on breakout

• Galling is in every plant!
Galling is expensive

- Labor
 - Man-hours spent machining, torching, etc.
 - Standby time
- Time
 - Project creep
 - Scheduling for uncertain outcomes
- Safety
 - Hot work permits
 - Torches and hydrocarbons don’t mix
- Risk to components
 - Can only oversize so much
 - Unnecessary machining

Galling is common

...expensive

...& PREVENTABLE!
Misconceptions about galling

• Common explanation
 • Friction → heat → melting

• In actuality
 • Driven by DEFORMATION rather than friction
 • Fusion due to ADHESION rather than melting

• Galling is a PROCESS rather than an event

• Macroscopic effect of MICROSCOPIC phenomena

Galling is...common
 ...expensive
 ...& PREVENTABLE!
How does galling occur?

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion

Galling is...common
...expensive
...& PREVENTABLE!
How does galling occur?

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion

Galling is...common
...expensive
...& PREVENTABLE!
How does galling occur?

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion
How does galling occur?

• Initial contact at high points
 • High local stress, penetrates surface
 • Initiates plastic deformation
 • Stress & deformation increase heat/adhesion

• Formation and growth of lump
 • Penetrates the oxide layer
 • Damages bulk material
How does galling occur?

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion

- Formation and growth of lump
 - Penetrates the oxide layer
 - Damages bulk material
How does galling occur?

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesions

- Formation and growth of lump
 - Penetrates the oxide layer
 - Damages bulk material

- Energy storage increases
 - Low energy transfer away from lump
 - Clear change in contact and plastic behavior

Galling is...common
...expensive
...& PREVENTABLE!
How does galling occur?

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion

- Formation and growth of lump
 - Penetrates the oxide layer
 - Damages bulk material

- Energy storage increases
 - Low energy transfer away from lump
 - Clear change in contact and plastic behavior

- Fusion
 - Share electron cloud
 - Parts are bonded together

Galling is...common
...expensive
...& PREVENTABLE!
How does galling occur?

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion

- Formation and growth of lump
 - Penetrates the oxide layer
 - Damages bulk material

- Energy storage increases
 - Low energy transfer away from lump
 - Clear change in contact and plastic behavior

- Fusion
 - Share electron cloud
 - Parts are bonded together

Galling is...common...expensive...& PREVENTABLE!
Factors that affect galling

• Heat promotes galling
 • During movement – increases adhesion
 • In-service – creep penetration

• Ductility promotes galling
 • Brittle material – energy used to create new surface (break bonds)
 • Ductile material – energy also goes into deformation (heat)

• Oxide layer
 • Inhibits galling – brittle fracture, get in the way of metallic bonds
 • Promotes galling – volume change, initiation sites

Galling is...common
...expensive
...& PREVENTABLE!
Factors that affect galling - Stainless

• High ductility
 • Plastically deforms
 • Generates heat readily

• Low thermal conductivity
 • Heat is trapped
 • Localized storage increases

• Thin passive oxide layer
 • Scraped off or penetrated easily, high self adhesion
 • Low energy requirement

Galling is...common
 ...expensive
 ...& PREVENTABLE!
Galling solution

• Possible solution paths
 • Change geometry to lower stress
 • Change surface finish to limit asperities
 • Change friction/lubrication to reduce contact
 • Reduce ductility to reduce energy storage
 • Create thermodynamically ideal oxide layers
 • Employ dissimilar metals to lower adhesion

• Our solution...

Galling is…common
...expensive
...& PREVENTABLE!
Galling solution

• Possible solution paths
 • Change geometry to lower stress
 • Change surface finish to limit asperities
 • Change friction/lubrication to reduce contact
 • Reduce ductility to reduce energy storage
 • Create thermodynamically ideal oxide layers
 • Employ dissimilar metals to lower adhesion

• Our solution...

 DON’T TURN THE NUT UNDER LOAD!

Galling is...common
...expensive
...& PREVENTABLE!
Galling solution

- Installation
 - Slip it over stud
 - Similar to flat washer

- In-service
 - Part of bolted joint
 - Metal in compression

- Breakout
 - Turn Pop-Washer™ till it pops (40 degrees)
 - Take nut off under zero load

Galling is...common
...expensive
...& PREVENTABLE!

US Patent No. 8,579,572
Galling solution

- Installation
 - Slip it over stud
 - Similar to flat washer

- In-service
 - Part of bolted joint
 - Metal in compression

- Breakout
 - Turn Pop-Washer™ till it pops (40 degrees)
 - Take nut off under zero load

Galling is...common
...expensive
...& PREVENTABLE!

US Patent No. 8,579,572
Galling solution

- Pop-Washer™
 - Purely mechanical
 - Only two parts
 - No special tools

- Complimentary steps
 - Stack height dependent on orientation
 - Alleviates bolt stretch
 - Allows rotation in only one direction

Galling is...common
...expensive
...& PREVENTABLE!

US Patent No. 8,579,572
Field trial - DCU

• Location
 • Tesoro Golden Eagle Refinery
 • Martinez, CA

• Delayed coker unit
 • Four drums
 • 53,000 bpd capacity

• Trial details
 • Began in 2013
 • Breakout every 3 months

Galling is...common
...expensive
...& PREVENTABLE!
Field trial - DCU

- Overhead line manways
 - 30” 300# flanges
 - (32) 2” bolts on each
 - 150°F - 900°F, 18 hour cycle
 - History of galling issues

- Bolting details
 - B16 studs
 - 111 kip bolt load
 - 40 ksi bolt stress
 - 3490 ft-lbs applied torque

Galling is...common
...expensive
...& PREVENTABLE!
Galling is...common
...expensive
...& PREVENTABLE!

Scope & Results

• 500+ successful activations
• 1,000,000+ hours combined usage
Field trial - DCU

Scope & Results
- 500+ successful activations
- 1,000,000+ hours combined usage

Before Pop-Washer
- 25% to 75% seizing rate
- Cutting torch used
- Hot work permit required
- Replace hardware every time
- 12+ hours for breakout

Galling is...common
...expensive
...& PREVENTABLE!
Field trial - DCU

Scope & Results

- 500+ successful activations
- 1,000,000+ hours combined usage

Before Pop-Washer

- 25% to 75% seizing rate
- Cutting torch used
- Hot work permit required
- Replace hardware every time
- 12+ hours for breakout

With Pop-Washer

- No seizing
- No torches
- All nuts spun off by hand
- Hardware in good condition
- 88 minutes for breakout
“In this case, the critical flange typically took four men around 22 hours to de-torque and disassemble with 50% replacement of hardware.

With addition of Pop-Washers, the job was cut to less than eight hours with only two men and 0% replacement cost.”

-Kalani Cobb, Tesoro Maintenance Supervisor
“Pop-Washers are a truly unique design in solving stud galling issues in critical bolted joints. Typical reduction of manpower has been proven to be upwards of 75%.

Reduction in cost of material, labor, equipment repair from traditional stud removal is greater than 85%!”

-Kalani Cobb, Tesoro Maintenance Supervisor
Field trial – DCU annual cost

• Direct costs (2012)
 • 1408 man-hours
 • $56,300 in labor
 • $19,200 in standby time/equip
 • $51,000 in hardware
 • $126,500 total direct costs

• Direct costs (2014)
 • 260 man-hours
 • $10,400 in labor
 • $2,800 in standby time/equip
 • $0 in hardware
 • $13,200 total direct costs

Galling is...common
...expensive
...& PREVENTABLE!
Take home points

GALLING IS EXPENSIVE

GALLING IS PREVENTABLE
<table>
<thead>
<tr>
<th>GALLING IS EXPENSIVE</th>
<th>GALLING IS PREVENTABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>“It’s just nuts and bolts”</td>
<td></td>
</tr>
<tr>
<td>- 1400+ man-hours</td>
<td></td>
</tr>
<tr>
<td>- $126,500 in direct costs</td>
<td></td>
</tr>
<tr>
<td>The bigger concerns</td>
<td></td>
</tr>
<tr>
<td>- Scheduling/planning</td>
<td></td>
</tr>
<tr>
<td>- Damage</td>
<td></td>
</tr>
<tr>
<td>- Safety</td>
<td></td>
</tr>
</tbody>
</table>
Take home points

GALLING IS EXPENSIVE

• “It’s just nuts and bolts”
 • 1400+ man-hours
 • $126,500 in direct costs

• The bigger concerns
 • Scheduling/planning
 • Damage
 • Safety

GALLING IS PREVENTABLE

• There are options to eliminate the problem

• Incurring these costs, delays, risks, & safety issues is a CHOICE!
DCU Bolting: A Galling Prevention Case Study at Tesoro Golden Eagle

Presented by:

Kalani Cobb – Maintenance Supervisor Tesoro
(Kalani.J.Cobb@tsocorp.com)

Michael J Psimas, PhD – BlackHawk Engineered Products
(mpsimas@integratechnologies.com)