DCU Bolting: A Galling Prevention Case Study at Tesoro Golden Eagle

Presented by:

Kalani Cobb – Maintenance Supervisor Tesoro (Kalani.J.Cobb@tsocorp.com)

Michael J Psimas, PhD – BlackHawk Engineered Products (mpsimas@integratechnologies.com)

Outline

- Basics of galling
 - Definition & importance
 - Process & mechanisms
- Possible solution paths
 - One option for avoidance
 - How it works
- Case study
 - Background & application details
 - Scope & results

What is galling?

- Definition
 - Material wear during sliding
 - Macroscopic transfer of material
 - Driven by adhesion
- In practice
 - Everyone has encountered it
 - Stuck nuts and studs
 - Act as one part
 - Normally on breakout
- Galling is in every plant!

Galling is expensive

- Labor
 - Man-hours spent machining, torching, etc.
 - Standby time
- Time
 - Project creep
 - Scheduling for uncertain outcomes
- Safety
 - Hot work permits
 - Torches and hydrocarbons don't mix
- Risk to components
 - Can only oversize so much
 - Unnecessary machining

Galling is...common

Misconceptions about galling

- Common explanation
 - Friction → heat → melting
- In actuality
 - Driven by DEFORMATION rather than friction
 - Fusion due to ADHESION rather than melting
- Galling is a PROCESS rather than an event
- Macroscopic effect of MICROSCOPIC phenomena

Galling is...common

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion

Galling is...common

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion

Galling is...common

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion

Galling is...common

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion
- Formation and growth of lump
 - Penetrates the oxide layer
 - Damages bulk material

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion
- Formation and growth of lump
 - Penetrates the oxide layer
 - Damages bulk material

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion
- Formation and growth of lump
 - Penetrates the oxide layer
 - Damages bulk material
- Energy storage increases
 - Low energy transfer away from lump
 - Clear change in contact and plastic behavior

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion
- Formation and growth of lump
 - Penetrates the oxide layer
 - Damages bulk material
- Energy storage increases
 - Low energy transfer away from lump
 - Clear change in contact and plastic behavior
- Fusion
 - Share electron cloud
 - Parts are bonded together

- Initial contact at high points
 - High local stress, penetrates surface
 - Initiates plastic deformation
 - Stress & deformation increase heat/adhesion
- Formation and growth of lump
 - Penetrates the oxide layer
 - Damages bulk material
- Energy storage increases
 - Low energy transfer away from lump
 - Clear change in contact and plastic behavior
- Fusion
 - Share electron cloud
 - Parts are bonded together

Factors that affect galling

- Heat promotes galling
 - During movement increases adhesion
 - In-service creep penetration
- Ductility promotes galling
 - Brittle material energy used to create new surface (break bonds)
 - Ductile material energy also goes into deformation (heat)
- Oxide layer
 - Inhibits galling brittle fracture, get in the way of metallic bonds
 - Promotes galling volume change, initiation sites

Factors that affect galling - Stainless

- High ductility
 - Plastically deforms
 - Generates heat readily
- Low thermal conductivity
 - Heat is trapped
 - Localized storage increases
- Thin passive oxide layer
 - Scraped off or penetrated easily, high self adhesion
 - Low energy requirement

- Possible solution paths
 - Change geometry to lower stress
 - Change surface finish to limit asperities
 - Change friction/lubrication to reduce contact
 - Reduce ductility to reduce energy storage
 - Create thermodynamically ideal oxide layers
 - Employ dissimilar metals to lower adhesion
- Our solution...

Galling is...commor

- Possible solution paths
 - Change geometry to lower stress
 - Change surface finish to limit asperities
 - Change friction/lubrication to reduce contact
 - Reduce ductility to reduce energy storage
 - Create thermodynamically ideal oxide layers
 - Employ dissimilar metals to lower adhesion
- Our solution...

DON'T TURN THE NUT UNDER LOAD!

- Installation
 - Slip it over stud
 - Similar to flat washer

- In-service
 - Part of bolted joint
 - Metal in compression

- Breakout
 - Turn Pop-Washer™ till it pops (40 degrees)
 - Take nut off under zero load

US Patent No. 8,579,572

- Installation
 - Slip it over stud
 - Similar to flat washer

- In-service
 - Part of bolted joint
 - Metal in compression

- Breakout
 - Turn Pop-Washer™ till it pops (40 degrees)
 - Take nut off under zero load

US Patent No. 8,579,572

- Pop-Washer™
 - Purely mechanical
 - Only two parts
 - No special tools

- Complimentary steps
 - Stack height dependent on orientation
 - Alleviates bolt stretch
 - Allows rotation in only one direction

US Patent No. 8,579,572

Galling is...common

...expensive

...& PREVENTABLE!

- Location
 - Tesoro Golden Eagle Refinery
 - Martinez, CA
- Delayed coker unit
 - Four drums
 - 53,000 bpd capacity
- Trial details
 - Began in 2013
 - Breakout every 3 months

Galling is...common

- Overhead line manways
 - 30" 300# flanges
 - (32) 2" bolts on each
 - 150°F 900°F, 18 hour cycle
 - History of galling issues
- Bolting details
 - B16 studs
 - 111 kip bolt load
 - 40 ksi bolt stress
 - 3490 ft-lbs applied torque

Galling is...common

Scope & Results

- 500+ successful activations
- 1,000,000+ hours combined usage

Galling is...common

Scope & Results

- 500+ successful activations
- 1,000,000+ hours combined usage

Before Pop-Washer

- 25% to 75% seizing rate
- Cutting torch used
- Hot work permit required
- Replace hardware every time
- 12+ hours for breakout

Scope & Results

- 500+ successful activations
- 1,000,000+ hours combined usage

Before Pop-Washer

- 25% to 75% seizing rate
- Cutting torch used
- Hot work permit required
- Replace hardware every time
- 12+ hours for breakout

With Pop-Washer

- No seizing
- No torches
- All nuts spun off by hand
- Hardware in good condition
- 88 minutes for breakout

Galling is...common

"In this case, the critical flange typically took four men around 22 hours to de-torque and disassemble with 50% replacement of hardware.

With addition of Pop-Washers, the job was cut to less than eight hours with only two men and 0% replacement cost."

-Kalani Cobb, Tesoro Maintenance Supervisor

Galling is...commor

"Pop-Washers are a truly unique design in solving stud galling issues in critical bolted joints.

Typical reduction of manpower has been proven to be upwards of 75%.

Reduction in cost of material, labor, equipment repair from traditional stud removal is greater than 85%!"

-Kalani Cobb, Tesoro Maintenance Supervisor

Galling is...commor

Field trial – DCU annual cost

- Direct costs (2012)
 - 1408 man-hours
 - \$56,300 in labor
 - \$19,200 in standby time/equip
 - \$51,000 in hardware
 - \$126,500 total direct costs
- Direct costs (2014)
 - 260 man-hours
 - \$10,400 in labor
 - \$2,800 in standby time/equip
 - \$0 in hardware
 - \$13,200 total direct costs

Take home points

GALLING IS EXPENSIVE

GALLING IS PREVENTABLE

Galling is...common

Take home points

GALLING IS EXPENSIVE

- "It's just nuts and bolts"
 - 1400+ man-hours
 - \$126,500 in direct costs
- The bigger concerns
 - Scheduling/planning
 - Damage
 - Safety

GALLING IS PREVENTABLE

Galling is...common

Take home points

GALLING IS EXPENSIVE

- "It's just nuts and bolts"
 - 1400+ man-hours
 - \$126,500 in direct costs
- The bigger concerns
 - Scheduling/planning
 - Damage
 - Safety

GALLING IS PREVENTABLE

 There are options to eliminate the problem

 Incurring these costs, delays, risks, & safety issues is a CHOICE!

Galling is...common

DCU Bolting: A Galling Prevention Case Study at Tesoro Golden Eagle

Presented by:

Kalani Cobb – Maintenance Supervisor Tesoro (Kalani.J.Cobb@tsocorp.com)

Michael J Psimas, PhD – BlackHawk Engineered Products (mpsimas@integratechnologies.com)

