More Propylene in Existing FCC Units & Revamps

Christopher Dean - HIGH Olefins Technology Services LLC
Purpose (Objective)

• To present and briefly discuss producing more propylene (C3=) in conventional FCC’s, potential revamps and concerns
Contents - Covering 4 Points

• Why Propylene from FCCU’s ?

• Current operating modes & feedstocks (G&A)
 • Different Mode – More Distillate + C3=

• Utilizing other feedstocks

• Revamps to Existing Units
Why Propylene from FCCU’s?

- Europe, North America (US) refineries are facing profitability challenges
 - Gasoline demand declining both areas
 - Middle Distillates (Diesel) markets increasing both areas
 - European surplus gasoline export markets are declining
 - US lighter shale crudes, “tight oil” use is increasing that produce more naphtha and less diesel

- C3= shortages are expected; C3= Prices >> Gasoline (Chemical & Polymer Grades)

- Existing FCC’s & Steam Crackers can’t meet the demand
More Propylene in Existing Units

• Operating Variables
• Catalysts
• Feedstock Changes
• Hardware Changes
 • New HOFCC Designs - Revamps
More Propylene in Existing Units

• Operating Variables
 • Increase Severity (Increase conversion)
 • Reactor Temps
 • Residence Times
 • High Cat/Oil Ratios
 • Lower Partial Pressure *

✓ Recycle Cracked Naphtha
Catalysts

- ZSM-5
- Lower RE, UCS
- Higher Activity (?)

Feedstocks Changes

- More H2 content

Hardware Changes

- New HOFCC* Designs Components for Revamps

* HOFCC - High Olefin FCC
Distillate Mode – More Propylene

• Catalyst
 • ZSM-5
 • Lower RE, UCS
 • Higher Activity

• Recycle cracked naphtha (LCN, FRCN)

Note:

Distillate Mode typically operates to produce enough C4= to meet Alky capacity
Need for Revamps?

• Different Feedstocks
 • More severe HDT
 • Less Resid
 • Lighter Feeds –
 • Tight Oil
 • Condensates
 • Naphtha (paraffinic)

• Distillate Mode + Propylene
Concerns

• Gas Con Changes （ More Light Gases ）
• Treating & Contaminant Removal
 • Treating Off Gas for C2=&C2
 • Polymer Grade C3=

• Aromatic Gasoline
 • Gasoline Blending
 • Aromatic Extraction
Fluid Catalytic Cracking PFD
Hardware Changes for More Propylene (Revamps)

Increase Reaction Time

• Additional Reactor Zone
 • 2nd riser terminates in existing Rx. Vessel
 • 2nd riser / downflow rx. terminates in new Rx. Vessel

• Recycle LCN/FRCN to feed or 2nd reaction zone

• More Bed Cracking

• Premix catalysts - spent/regen (RxCat Vessel)
Summary - Licensor Types of HOFCC

- UOP- PetroFCC
- S&W Deep Catalytic Cracker (DCC) *
- KBR- Maxofin Process- *
- Axens / S&W - High Severity FCC (HS-FCC)*
- ABB Lumus /Indian Oil Company - Indmax *
- Sinopec*
- Others

* Proprietary Catalysts
KBR MAXOFIN Process

- Primary Feed Riser
- Second Riser For Naphtha Recycle
- Fresh Feed
- Recycle Injection
UOP PetroFCC Process
Technip Stone & Webster DCC Process

- Fresh Feed
- Riser Steam
- Flue Gas
- To Gas Recovery
- Slurry Recycle
- Stripping Steam
- Reactor
- Regenerator
- Blower
- Riser Steam
- Fresh Feed
Shell Milos Distillate + Olefins

Source Shell Global Solutions
Retrofit To Axens/Shaw’s R2R FCC Unit

Existing RFCC

Retrofit

Stripper Vessel

Reactor - Stripper Vessel

Downer Reactor

Reactor Riser

Regenerator
Conclusions
More Propylene in Existing FCC Units & Revamps

• Producing More Propylene in existing FCC’s is viable for increasing refinery profitability
• Producing More Propylene in Distillate Mode is viable
• Revamps to existing FCC’s utilizing HOFCC’s Technology and catalysts are being implemented!
THANK YOU

The End

Questions ???

Additional Follow-up discussions during the Revamp Workshop