

Decoking with RUHRPUMPEN

reliable, safe, automatic

Coking.com Safety Seminar Cologne 30th – 2nd October 2008

Dr. Wolfgang Paul, paul_dr@ruhrpumpen.de RUHRPUMPEN

RP – Hydraulic Decoking System

Basics for Automatic Decoking

Hydraulic Decoking System

Coking.com Safety Seminar, Cologne 2008

 $\triangleright \triangleright$

Hoist, Block and Rope

- Hoist with integral cartridge gear
 - drum with grooves
 - Pull force 4,5 t
 - slack rope indicator
 - locks the hoist

Rope

- measurement of tension in the rope
- indication at the operator panel
- avoiding of overload
- Materal class II

Hoist, Block and Rope

- Hoist, electrical driven, cartridge gear
 - Pull force 5 t
 - slack rope device
 - MDMT -45°C
 - ATEX, CSA
- Rope
 - measurement of tension in the rope
 - indication at the operator panel
 - avoiding of overload
- Variable Frequency Converter VFC
 - Installed in safe area

Coking.com Safety Seminar, Cologne 2008

Hydraulic Decoking System

Derrick

Drill Stem Drive DSD

- **Electrically or hydraulically driven**
- Crosshead with Free Fall Arrestor Guide rails

Guide rails, certificates

• High Pressure Water Line,

HP Hose, Drill Stem, Valves

- Tool, manual or automatic
- Pulley blocks system
- Instrumentation,

Rope, instruments for position and load

Latches, Position switches

RUHRPUMPEN - Combination Tool

Basic design

- Slim tool, OD 13"
- Low lift force
- Low torque

Switching devices

- Manual / Automated
- At the top of the tool

Valves

- Ballshape valves
- No seals
- Pressure operated
- Nozzles, cutting
 - 0°
 - 10° up both cutting nozzles

Nozzles, drilling

- 1 strong centre nozzle
- 3 periphery nozzles

RP - Cutting Tool

Basic design

- Slim tool, OD 13"
- Low lift force
- Low torque

Switching devices

- Manual / Automated
- At the top of the tool

• Valves

- Ballshape valves
- No seals
- Pressure operated

• Nozzles, cutting

0° or 10° up both cutting nozzles

• Nozzles, drilling

- 1 strong centre nozzle
- 3 periphery nozzles
- Patent available

Coking.com Safety Seminar, Cologne 2008

 $\triangleright \triangleright$

Crosshead - FFA

- Drill Stem Drive
 - hydraulic driven
- Free fall Arrestor
- Pulley Block
- Gooseneck / Swivel

Crosshead w DSD

- Drill Stem Drive
 - hydraulic driven
- Free fall Arrestor
- Pulley Block
- Gooseneck / Swivel
- Material class II, CA

Drill Stem Drive

- Drill Stem Drive
 - Electric motor
 - High load bearing
 - Grease lubrication
 - Cartridge packing
 - Swivel
 - MDMT -45°C
 - MAWP like Pump
- Varible Frequency Converter VFC
 - At Cutting deck, or
 - At safe area

Free Fall Arrestor

Full load functional test of Free Fall Arrestor Weight 8600 kg

Crosshead - FFA

Crosshead test stand 3rd party

Full load functional test of Free Fall Arrestor Weight 8600 kg

Hydraulic Decoking System

Control system

Standard

- Master Control Panel MCP
 - PLC and BN-system in control room or in Main Pump Panel
- Main Pump Panel MPP
 - installed near pump
- Local Control Panel LCP,
 - Installed in Operator shelter, cutting deck or remote
- Cabinet with VFD's for hoist and DSD,
 - •When operated lelectrically

Drum vibration monitoring system

- for remote and/or automatic cutting
- installed at cutting deck, drum and chute

optional

Control system

- Local Operator panel
 Operator deck
 - Operation of
 - Pump (Stop)
 - Decoking valve
 - Isolation valve
 - Hoist
 - Drill stem drive
 - Interactive P&ID

Control system

Local Operator panel Operator deck

- Operation of
 - Decoking valve
 - Isolation valve
 - Hoist
 - Drill stem drive

Interactive P&ID

Control and process visualisation

Operation

Manual operation

- LOCAL:commissioning, trouble operation, maintenance
- **REMOTE:** from operator shelter at safe location

Batch operation (remote or semi-automatic)

• Batch	Drilling
Batch	Cutting
manual override	Cleaning

Automatic Operation

- Standard program
- Self Optimising program

Drilling, Switching, Cutting, Cleaning Integrated control subroutines Integrated problem solving routines

Operation from Remote Location

- •Remote Control Panel RCP
 - installed in remote shelter or remote Operator shelter

Instrumentation in field

Cameras

Cutting deck, chute

- Indication
 Clear operation at cutting deck
- Vibration probes
 - Indication Jet to Wall

Drum wall

Remote Decoking

Instrumentation drum-vibro-system

Operation by PLC from Control Room

•PLC Control Panel PLC-CP

- installed in Control room
- one local panel at cutting deck for auto local operation

Instrumenation in field

- Cameras
 Cutting deck, chute
 - Indication
 Clear operation at cutting deck and chute
- Vibration probes
 - Indication Jet to Wall
- Vibration Probes/Microphones
 - Indication
 Coke fall out

- **Drum wall**
- Chute

Instrumentation drum-shute vibro/acoustic-system

Instrumentation drum-shute vibro-system

bb-bp-ge

Automatic Decoking

Automatic Drilling and Cutting Procedure

10 1<u>3</u> 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 4 7 1 80 Purge 180 **Tool change** 280 With "purge sequencies" 380 480 If required! 580 680 Cutting Seg.6 780 880 980 Drillin Sea.1 1080 1180 Seg.7 1280 Sea.11 1380 1480 Cone 1580 drilling 1680 Seg.8 Seg.2 Seg.4 Seg.10 1780 1880 1980 Seq.3 Seg 5 2080 2180 Sea.9 2280 2380 2480 2580 **Cutting preparation** 2680

Automatic Coker Operation

Dynamic Drum Control DDC

bb-bp-ge

In order to - improve safety (high-level-valve-interlock-system) - maximize feed throughput by optimizing cycle-time, a new control-program has been developed.

DDC (dynamic drum control) includes the following subroutines :

DDS (dynamic drum sequences).

STO (step time optimizer) to stabilize drum cycle time.

DFR (dynamic forecast report) to optimize maintenance activities and minimize feed losses.

SFR (schedule feed rate) to meet the integrated production plan

ADD Automatic Drilling and Cutting

Automatic Coker Operation

Dynamic Drum Control DDC	bb-bp-ge
Basic Instrumentation and Function	ions
Field-PLS-DCS-Level Interaction	
DDC Components and Interaction	n
Management with DFR	(Dynamic Forecast Report)
Process optimization with STO	(Step Time Optimizer)
Time function of an entire drumcy	ycle
Process optimization with DDS	(Dynamic Drum Sequence)
Sequence – Automatic Drilling and Cutting	
Process optimization with SFR	(Scheduled Feed Rate)

THANKS FOR YOUR

ATTENTION

