Innovation isn’t just what we do. It’s who we are.

“Finding The Data In The Noise”

A Data Mining Tool for Quantifying Improved Delayed Coker Performance
Agenda

- Introduction to Dorf Ketal
- Challenges in Today’s Cokers
- Dorf Ketal Innovation for Improved Liquid Yield
- Data Mining Approach
- Case Histories
Challenges in Today’s Cokers

- Significant Gap between current Coke Yield and CCR (theoretical min.)
 - COKERMAX™ helps close this gap
- Feed Quality is Poor
 - More Metals
 - More CCR
 - Higher Asphaltene content
 - High Sulphur Content
- More prone to fouling
- Coke Morphology is changing
 - Shot Coke formation
 - Less Profitable
 - Operational Challenges
- More foaming

Source: Solomon Associates 2008 Fuels Refinery Performance Analysis
Innovation isn’t just what we do. It’s who we are.

Economic Drivers for Improved Liquid Yield

Diesel vs. Coke pricing. Pricing varies by geography. 1% increase of liquid over coke valued at $1 to $1.20 per bbl of Coker Feed in 2014 for USA
Joint Industry Project on Delayed Coking
Research effort to address these challenges

• Project began in 1999 and is on-going. Members include major refining companies.
• Dorf Ketal is a member of this project.
• Improving liquid yield is one of the goals of the project.
• Dorf Ketal invested heavily in finding a solution to challenge of improving liquid yield.
COKERMAX™ Offering

• **COKERMAX™** is a chemical additive that increases liquid yield 1% to 3%.

• **Easy to feed**
 – Inject Additive into Suction of Main Fractionator Bottoms Pumps

• **Demonstrated success at one refinery in China**
 – Liquid yield improvement of 1.4% to 1.5%

• **Lab design and protocol to test your feed for liquid yield improvement**
 – Product selection, dosage range, liquid yield improvement
 – Predictive tool for full scale results

• **Data Mining Services to quantify impact of COKERMAX™ on liquid yield**
Innovation isn’t just what we do. It’s who we are.

Need for Data Mining

• **Variables affecting liquid yield**
 – feed composition, operating conditions, equipment configuration, processing goals, and nature of the coke.
 – Impractical to hold all these variables constant to isolate impact of additive.

• **Net Value of Converting Coke to Liquid**
 – $100 to $120 per barrel in USA, varies based on diesel & coke pricing
 – 1% improvement in liquid as % of Coker Feed = $1 to $1.2/bbl of feed.
 – 1.5% improvement for 30,000 bbl/day Coker is about $14MM/year.

• **$14MM/year is large number nominally, but:**
 – Benefit of CokerMax™ Additive may appear masked by normal yield variation.
Dorf Ketal Approach to Data Mining

A multivariate statistical approach towards optimized yield comprising of,

✓ Data Preparation, eliminating outliers
✓ Principle Components Analysis, A detailed study of key process variables impacting yield.
✓ Development of correlations between principle components and actual liquid yield.
✓ Definition of baseline for benchmarking impact of change.
✓ Detailed root cause analysis for all the batches with yields below potential.
✓ Pre-trial protocol to evaluate the impact of change, in this case additive performance.
Innovation isn’t just what we do. It’s who we are.

A histogram Representation of Yield

- The Low-Low limit (LL) is the absolute (engineering) minimum value that a model variable may have. A typical use of the Low-Low limit is to set the data quality of all values that are less than the Low-Low limit to "bad quality". All "bad quality" data will not be used in model construction.
- The Low limit (L) is a secondary limit that indicates the "operational" lower limit of a variable. By default, the low limit is set to 1 standard deviation from the mean.
- The High-Low limit (HH) is the absolute (engineering) maximum value that a model variable may have. A typical use of the this limit is to set the data quality of all values that are more than the High-Low limit to "bad quality". All "bad quality" data will not be used in model construction.
- The High limit (H) is a secondary limit that indicates the "operational" higher limit of a variable. By default, the high limit is set to 1 standard deviation from the mean.

+/- 1 standard deviation is almost 4%
Innovation isn’t just what we do. It’s who we are.

Scatter plot for one of the variables with respect to yield.

The green lines represent 1 standard deviation on the mean for Sulfur & yield respectively.
Principle Components Identification Matrix

• SPE calculation for any variable is done for Principle Component Analysis.
• Depends upon:
 a. The degree of variation of that particular component.
 b. Correlation of this variation to the target parameter/yield.
• A high variation and a low correlation w.r.t yield will not have a high SPE.
• High variation and high correlation will definitely have a high SPE.
• SPE is a factor relative to yield.
Innovation isn’t just what we do. It’s who we are.
Innovation isn’t just what we do. It’s who we are.

A snapshot of the model output screen
Using the Model to Isolate Impact of COKERMAX™ Additive

Baseline: 65.77%
COKERMAX Impact: 1.43%
Total Yield: 67.20%
Actual Yield is 67.14%, Model Output is 67.96%.
Innovation isn’t just what we do. It’s who we are.

Model 67.2% vs. 67.14% adj. for principle components

Dosage: 155ppm
Innovation isn’t just what we do. It’s who we are.

Taking Chemical Out, Modeled Baseline is 65.77%, 1.43% due to COKERMAX™
Modeled baseline of 65.77% in close agreement with agreed actual baseline of 65.63%
Using the tool to evaluate how to improve yield with better control of principle components.
Actual yield is 64.38%, model predicts 65.841%
Adjusting for principal components, Model is close to actual.
Innovation isn’t just what we do. It’s who we are.

Summarizing Data Mining Process

- Outliers are removed from data set.
- Multivariate analysis rank orders principle components effecting liquid yield in baseline, used to create model.
- The model gives operator real time information on how variation in principle components is impacting liquid yield.
- The Model allows for every batch to have an adjusted baseline calculation, thereby isolating impact of COKERMAX™ Additive on batch by batch basis
- Ability to confirm additive effectiveness over time
- Model gives operator “What if” capability