

Agenda • Delayed coker foam control • Silicone decomposition • New coker antifoam • Case histories

Delayed Coker Foaming

- Operation of the delayed coker drum makes it an ideal place for foam to form
 - Gas (steam and hydrocarbon) flowing through hot, viscous, and polar liquid
 - Cracking of molecules creating additional polarity
 - Pressure not too high so that the gases can be pulled off the drum and sent to the main fractionator
- Excessive or uncontrolled foaming causes "foam-over" from the drum into the main fractionator
 - Will carry coke fines into the main fractionator and up the tower fouling the trays, downcomers, and lines
 - Will force the unit to shut down

BAKER HUGHES

Antifoams for Delayed Cokers

- Polydimethylsiloxanes (PDMS) are currently the most cost-effective coker foam control agents available
 PDMS:
- PDIVI5:
- Reduces foaming while filling drum
- Minimizes foam-over potential in coke drum
- Allows smaller outages; more coke production
- Silicon poisons downstream HDS catalyst
 - Mechanical entrainment
 - Distillation of small silicone molecules
- Higher MW PDMS = increased stability / slower decomposition

0 0111 Datas Liuchas Inconcested. Al Dichts Datas-

BAK IR HUGHES

Factors Affecting Antifoam Performance

- Dilution of antifoam in carrier stream
- Type of diluent can make a difference
- · Inject so antifoam is spread on foam front
- Injection should be opposite overhead vapor line
- ·Less foaming with higher drum temperatures
- Thermal decomposition rate of PDMS

BAKER HUDHES

BAKER

Decomposition Pro	ecomposition Products of Silicone Oil		
Product	B.P. °C	B.P.°F	
Cyclic Trimer	134	273	
Cyclic Tetramer	175.8	348	
Cyclic Pentamer	210	410	
Cyclic Hexamer	245	473	
²⁰ 0,201 Bair Laghan Incorporated. Al Rights Reserved.		BARTE BARTE Machines	

Higher Viscosity Silicone

- Higher viscosity = larger molecule
- Larger molecule takes longer to degrade
 - Defoams longer
 - Lower dosage required
 - -Less Si in products
 - Less catalyst contamination
- Even ultra-high viscosity silicone oil will thermally decompose

BAX OF

PDMS Stressed for 5 Hours at 375°C (700°F)			
Silicone Viscosity(cSt)	MW Initial	MW Stressed	% Reduction
60,000	95,348	82,646	13.3%
100,000	105,204	98,802	6.1%

Silicon	on Reduction in Pro		ducts			
	60,000 cSt ppm Si	600,000 cSt ppm Si	ppm Si reduction	%Si reduction		
Naphtha	34	12.3	21.7	63%		
LCGO	7.9	3.2	4.7	59%		
нсбо	7.3	2.7	4.6	63%		
17 0 2011 Baker Hughes Incorporated. Al Righ	hts Rasserved.			*108	inili Inte	

How Can We Overcome Si Poisoning?

- Find a cost-effective non-silicon antifoam / defoaming agent
- Identify alternate structures of siloxane antifoams
- Trap silicon compounds in the cracked gases

BAKER HUDHES

Field Trial #1

- Coker makes fuel grade coke
- Base case 600,000 cSt silicone antifoam
- Measured foam knock down
- Re-foam after drum switch
- Plant wanted to reduce Si contamination of coker products

BAXIP HUGHES

Sample	600,000 cSt (ppm Si)	FOAMSTOP 5000 LCI (ppm Si)	% Reduction
Coker Naphtha	3.29	1.29	62.5%
Coker Kerosene	4.41	1.92	56.5%

Field Trial #1

- Results with Baker Petrolite FOAMSTOP LCI antifoam
 - Knocked down foam better
 - Prevented re-foam after switch better
 - Could allow reduced outages
 - Reduced silicon contamination of products by over 50%

BAKER

DDM Siliaan In Creaked Dreducts			
PPINI	Silicon in Cr	аскеа Ргоа	ucts
Coker Product	600,000 cSt	FOAMSTOP 5000 LCI	% Reduction
	Drum	ו 1	
Naphtha	58.0	35.9	38
LCGO	38.8	10.3	73
HCGO	5.5	2.2	60
	Drum	12	
Naphtha	33.8	8.2	75
LCGO	28.7	3.2	88
HCGO	18	0.9	50

Field Trial #2

- Baker Petrolite FOAMSTOP 5000 LCI antifoam reduced Si in product
- More efficient to add antifoam early
 Foam easier to prevent than knock down
 - Use less antifoam
- •Kept foam down after drum switch
- •New material easy to handle

BAKER

BAX IP

Summary

- Baker Petrolite FOAMSTOP 5000 low catalyst impact antifoam is more stable than traditional coker antifoams
- Controls foam better
- More persistent in the coke drum
- Reduces silicon contamination of coker products which slows deactivation rates of downstream hydrotreater catalysts
- Improves refinery profitability by minimizing costs
 of HDS catalyst replacement

Closing

Thank you for your attention!

Contact information: bruce.wright@bakerhughes.com

> BAKER HUDHES