Naphtha Catalytic Cracking for Propylene Production by FCCU

Christopher Dean -HIGH Olefins Technology Services LLC

MORE PRODUCTION - LESS RISK!

Coking and CatCracking Conference New Delhi, India – October 2013

Purpose (Objective)

 To present and discuss producing propylene (C3=) by catalytic cracking paraffinic naphtha utilizing Fluid Catalytic Cracking processes

Contents- Covering 3 Points

- Why Propylene from FCCU's ?
- Naphtha Feedstocks Supply Balances
- Naphtha Catalytic Cracking Processes
 - FCC Catalytic Processes
 - Traditional Steam Cracking (Comparison)

Benefits

- MOTOR GASOLINE
- PETROCHEMICAL FEEDSTOCKS
 - Propylene (C3=)

TODAY & FUTURE PLANNING

- Minimizing to no gasoline production from FCC
- Additional Focus
 - Light Olefins (Ethylene & Butylenes)
 - Aromatics

Why Propylene from FCCU's ?

- Europe, North America (US) refineries are facing profitability challenges
 - Gasoline demand declining both areas
 - Middle Distillates (Diesel) markets increasing both areas
 - European surplus gasoline export markets are declining
 - US lighter shale crudes, "tight oil" use is increasing that produce more naphtha and less diesel
- Asia market is for distillates and petrochemical feedstocks
- Large Middle East, Asia, India and South America are building large integrated Refinery/ Petrochemical Complexes

Petrochemicals Opportunities

Main Building Blocks

- Olefins Two Main Blocks
 - Ethylene
 - Propylene
- Aromatics
 - Benzene
 - Paraxylene (other xylenes too)

 High Olefins - FCC (HOFCC) produces C3= and byproducts of other light olefins and aromatics

Produced by Steam Cracking Ethane & Liquid Feeds Naphtha Reformers

Secondary Source Produced by FCC's

Why Propylene ??

- C3= is the second important raw material after ethylene
- C3= by-product from steam cracking for ethylene with traditional FCC's the other main source
- Ethylene demand is expanding proportionally faster than Propylene demand (Propylene was exceeding ethylene growth up thru 2007-2008 Recession)
- To meet C2= demand new steam crackers are using Ethane as feedstock!
- With new SC, C3= shortages are expected; Existing FCC's can't meet the demand

On Purpose Propylene Processes (OPP) will be developed

Ethylene & Propylene Supply Sources

Data Courtesy of IHS CMAI

10

Steam Cracking Yields

Propylene/Ethylene(P/E) Ratio indicates propylene selectivity

Typical light olefin yields for steam cracking			
Feedstock	Ethylene, wt%	Propylene, wt%	P/E
Ethane	80	3	0.04 (0.0375)
Propane	44	15	0.34
Naphtha	30	16	0.53
Gas oil	23	15	0.65

Table 1

Meet Future C3= Demand in Asia A P/E Ratio 0.85 is required

WHY NAPHTHA CATALYTIC CRACKING ?

NAPHTHA SUPPLY

Naphtha Supply Balances

Supply is Increasing Globally

- Steam Cracking
 - Shifting to Ethane & Lighter Fuels from Naphtha & Gasoil
 - LNG/NGL
- Increased Byproduct Condensates from Gas Production
- Lighter Crude Slates for refiner feedstocks
 - Produce more naphtha
- Increasing demand for diesel not gasoline
- In North America: Fracking for Natural Gas and Shale Oil (Tight Oil)
- Aromatics supplies are being squeezed ???

"Somewhat decoupling" of naphtha pricing from crude"

Naphtha Cracking

Steam Cracking - Thermal

- Not Selective to Propylene makes Ethylene (P/E Ratio)
 - P/E Ratio of 0.55-0.68 (Naphtha & Gasoil Cracking)
- Steam Cracker capacities are world class size > 1000 KTA

Naphtha Cracking - Catalytic

- Propylene Selective not Ethylene
- P/E Ratio of 1.0 to 2.4
- Naphtha FCC capacities 20 MBPD == 64 KTA of ethylene

Naphtha Cracking Comparisons

Paraffinic Naphtha Feedstock Driven Catalytic & Thermal Processes

- ACO (Advanced Catalytic Olefin)
 - KBR License
 - Riser Technology
- HS-FCC (High Severity FCC)
 - Axens/S&W License
 - Downer Reactor
- Steam Cracking
 - Generic

Advanced Catalytic Olefins (ACO)Process

ACO Process Key Features - Reactor

- Proprietary KBR FCC reactor features
- Propylene/ethylene (P/E)
 Product Ratio ~1/1
- Proprietary catalyst from SK Corporation
- All proven hardware and processes
- Robust and flexible, compared to other processes

2008 Kellogg Brown & Root LLC. All Rights Reserved.

Features & Advantages of HS-FCC

Features

- Downflow Reactor (Downer)
- High Reactor Temperature
- High Catalyst to Oil Ratio
- Short Contact Time

Advantages

- High Propylene Yield
- High Butylene, iso-butylene Yields
- High Gasoline Octane (High Aromatics Content)
- Minimized Dry Gas

CATALYST FLOW

HS-FCC

SEPARATOR

US Patent 6146597

Quick separation Catalyst & Gas

Separator

Catalyst

Centrifugal force

Product Gas + Cat

SProduct Gas

Guide Vane

HS-FCC Naphtha Process

- Retrofit Type to existing FCCU
- Standalone Unit

Full Range Naphtha Yields Olefins wt%

P/E of 2.4

P/E of 0.55

Naphtha Cracking Fluid Processes

ACO Commercial Demonstration Unit Ulsan, South Korea HS-FCC Semi-Commercial Unit Mizushima, Japan

Conclusions Petrochemical Opportunities

- Naphtha Fluid Catalytic Cracking is a viable "On Purpose Propylene Process"
- Naphtha Catalytic Cracking produces higher propylene selectivity than Steam Cracking
- Naphtha Catalytic Cracking will help meet future propylene demand
- Naphtha Catalytic Cracking byproducts of other light olefins and aromatics for petrochemicals
- Paraffinic Naphtha Catalytic Cracking processes are in the initial stages of commercialization

