

FCC Spent Catalyst Stripper Technology

Paul D. Wendt FCC Technology Manager CB&I

Coking and CatCracking Conference

New Delhi, October 2013

Spent Catalyst Stripper Technology

- Big Picture Overview
- Process Considerations
- Development History
- Key Design Considerations
- ModGrid™ Stripper Internals Features
- Assessing Performance
- Commercial Examples

FCC Spent Catalyst Stripper - The Big Picture

- Critical component of the FCC reaction system
- Designed to recover hydrocarbon vapors entrained with catalyst via steam stripping
 - Reduces secondary thermal and catalytic cracking reactions
 - Reduces coke loading to the regenerator
- Significantly affects profitability of the unit
- Easy to operate and monitor
- Typically easy to revamp and upgrade
 - Relatively low investment cost and quick payouts
- Should always be evaluated when making modifications to any portion of the reactor/regenerator circuit

CBI

Effect on FCC Performance

- Directly impacts the feed conversion and overall yield selectivity from the unit
- Poor performance can result in:
 - Downgrade of valuable products
 - Increased delta-coke or coke on the catalyst
 - Increased regenerator temperature
 - Increased dry gas production
 - Loss of feed processing capacity
 - Catalyst deactivation
- Directly impacts unit steam usage / sour water production
- Key contributor to pressure build upstream of the SCSV
- Efficiently removing the hydrocarbon vapors can significantly improve the unit profitability

CBI

FCC Process Considerations

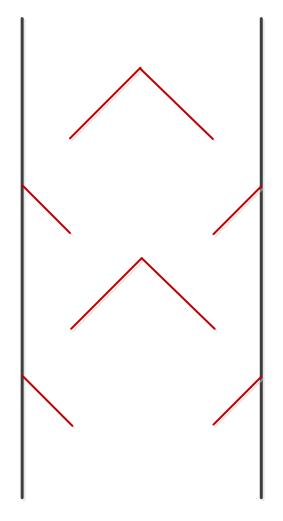
- FCC unit performance is dictated by a delicate coke and heat balance
- Heat produced from combustion of coke in regenerator supplies heat to operate the unit
- Four types of coke:
 - Contaminant coke from feed quality
 - Catalytic coke from feed conversion
 - Additive coke from feed metals
 - Cat-to-oil coke from entraining hydrocarbon leaving the stripper (interstitial and trapped within pores)
- Contaminant / catalytic / additive coke are functions of feed quality, catalyst type, and reactor temperature
- Cat-to-oil coke largely a function of spent catalyst stripper performance

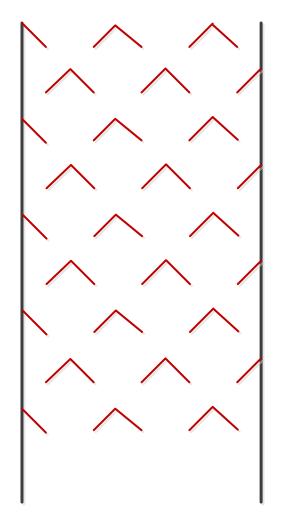
FCC Process Considerations

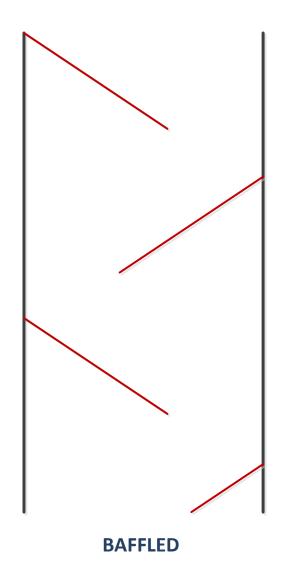
 Understanding coke yield and delta-coke from the heat balance is important for evaluating stripper performance

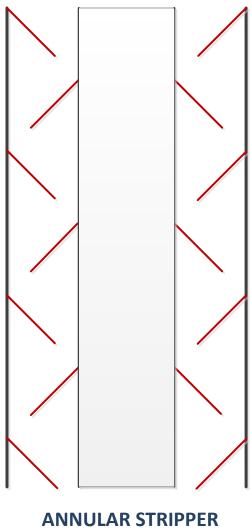
$$Delta$$
- $Coke = (CSC - CRC) \alpha (T_{Reg} - T_{Rxt})$

- Coke yield is essentially set by operating conditions
 - Riser outlet temperature, feed preheat temperature, etc.
- Delta-coke improvements required to increase cat-to-oil
- Spent catalyst stripping efficiency directly impacts the delta-coke


Development History


- Spent catalyst stripper technology has continually evolved over several decades
- Open strippers (no internals)
- Disk and donut baffles
- Shed deck baffles
- Modifications to include holes and tubes in the baffles
- Structured packing
- Accommodation to annular stripper configurations


DISK AND DONUT



SHED DECK

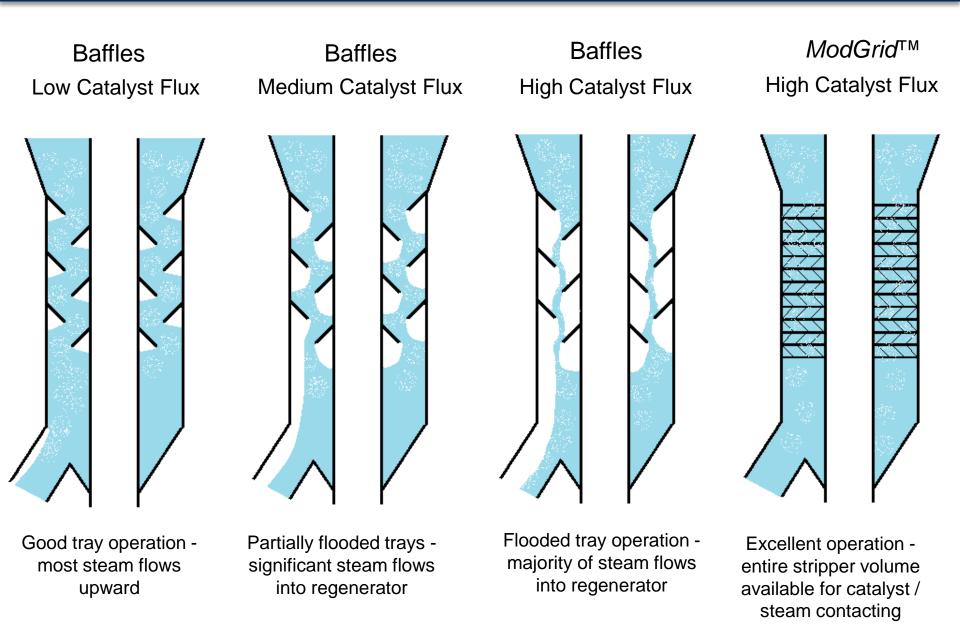
Stripper Key Design Considerations

- Maximize cross-sectional area of the vessel available for catalyst and steam to flow through it
 - Utilize the full diameter of the stripper available
- Maximize surface area available for mass transfer per unit volume of the stripper vessel
 - Enhances mass transfer for efficient stripping and hydrocarbon recovery
- Provide thorough and uniform contact of the catalyst with the stripping steam
 - Further enhances mass transfer
- Provide uniform catalyst fluidization
 - Minimizes stagnant zones that reduce stripping efficiency and promote coke formation
 - Minimizes channeling and bypassing

CBI

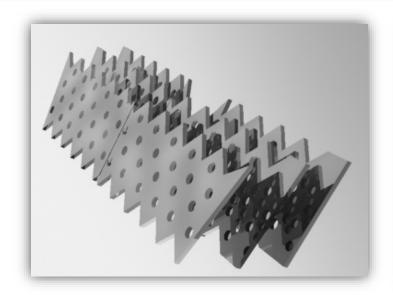
Stripper Key Design Considerations

- Manage the catalyst flux through the stripper
 - Provides adequate residence time for stripping
 - Prevents vapor drag into the regenerator
- Optimize the vapor bubble sizes throughout the stripper
 - Large bubbles rise faster and reduce contacting surface area
 - Smaller bubbles improve area but can be pulled down
- Maximize pressure build through the stripper
 - Provides flexibility for increased cat-to-oil
 - Closely tied to catalyst fluidization
- Optimize location of the stripping steam distributor
 - Provide ideal steam coverage entering the stripper internals
 - Minimize steam drag to the regenerator
- Minimize stripping steam requirement
 - Reduces sour water production and cyclone velocities



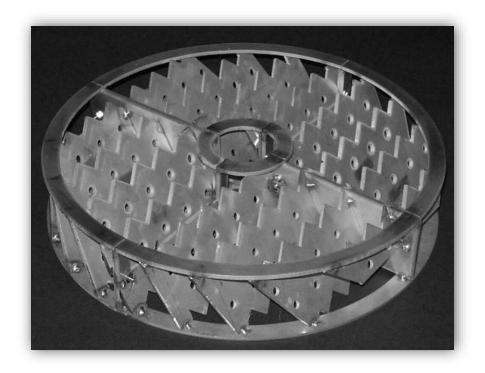
Stripper Key Design Considerations

- Provide wide range of operation
 - Maintain performance from turndown to max throughput
- Ensure catalyst is properly fluidized for entry into spent catalyst standpipe
 - Proper fluidization exiting the stripper is critical
- Provide structural integrity to handle normal and upset operations
 - Handle reversals and other severe events
- Provide flexibility to accommodate all unit configurations
- Minimize overall weight of the internals
- Provide flexibility for ease of fabrication, installation, and future inspection




Stripper Efficiency Comparison

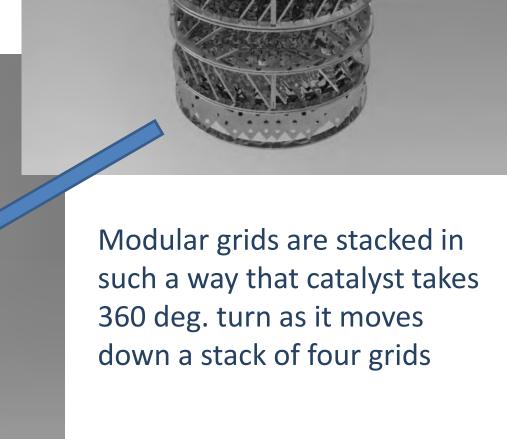
ModGrid™ Catalyst Stripper Internals from CB&I



Baffles angled and oriented such that:

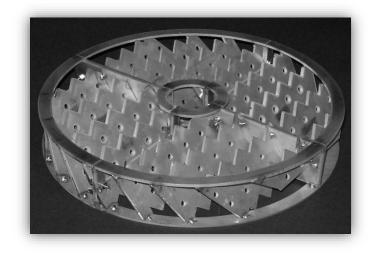
- Cross sectional area of stripper vessel available for catalyst flow is maximized
- Surface area available for mass transfer is maximized
- Flows of catalyst and steam, and their contact, are uniform
- Ideal bubble sizes are produced

ModGrid Catalyst Stripper Internals

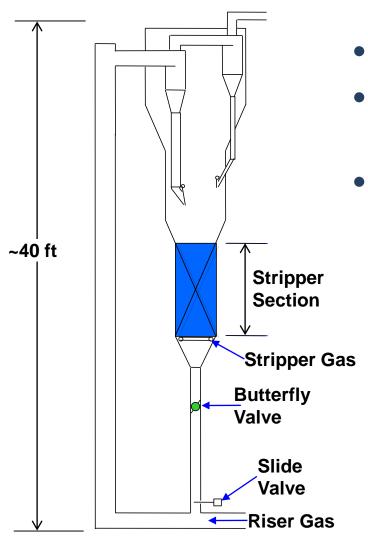


Baffles organized and constructed as modular grids to provide:

- Easy installation and removal
- Adaptability to different unit configurations
- Structural stability

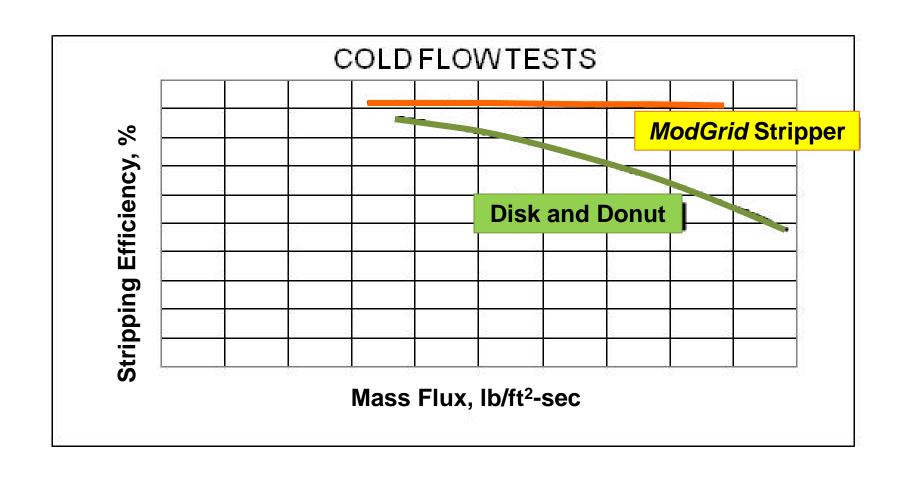


ModGrid Catalyst Stripper Internals


ModGrid Catalyst Stripper Benefits

- Reduced delta-coke
 - Reduced regenerator temperature
 - Ability to process heavier feed
- Increased cat-to-oil ratio
 - Higher conversion
 - Improved liquid yields
- Enhanced recovery of hydrocarbon vapors entrained with the catalyst
 - Lower dry gas yield
 - Reduced product downgrade
- Improved pressure build and slide valve pressure differential
- Reduced steam consumption

ModGrid Stripper Cold Flow Model Testing


- Extensive cold flow testing
- Disc and donut baffle tested for comparison
- Under all conditions, the ModGrid design exhibited:
 - Higher capacity
 - Higher efficiency
 - Efficiency nearly constant over wide range in catalyst flux

ModGrid Cold Flow Model Snapshot

ModGrid Stripper Efficiency Comparison

Assessing Performance

- Hydrogen-in-coke has traditionally been used to assess stripper performance
 - Requires a very reliable flue gas analysis to provide accurate hydrogen-in-coke values
 - Calculated number -- difference between two relatively large numbers
 - Often leads to scatter in the data analyses
 - Small changes in flue gas CO₂ content can lead to large changes in the hydrogen-in-coke calculation
- Hydrogen-in-coke can still be used as a secondary indicator of stripper performance
- Typical values range from 6.0 9.0
 - Lowest value possible from ideal stripping is 5.5 6.0%

A CO₂ concentration of 16 mol% instead of 15 mol% changes the Hydrogen-in-Coke value by 3 wt%

Assessing Performance

- Recommend using primary process variables to assess stripper performance (before and after revamp)
 - Regenerator dense bed temperature reduction for a given set of riser outlet and preheat temperatures
- Delta-coke reduction
- Combustion air reduction at a given oxygen concentration in flue gas
- Normalization of feedstock properties to negate feed effects
- Match catalyst properties and contaminant levels to negate catalyst effects
- Use cut point corrected product yields for consistency

ModGrid Stripper Revamp Results

Refinery A

	Pre-revamp	Post-revamp
Feed Rate	Base	+12%
Stripping Steam	Base	-30%
Coke, wt%	Base	-0.5
Dry Gas, wt%	Base	-0.9
Gasoline, wt%	Base	+0.9
LCO, wt%	Base	+1.4

ModGrid Stripper Revamp Results

Refinery B

	Pre-revamp	Post-revamp
Feed Rate	Base	+6%
Feed Con Carbon, wt%	Base	+0.4
Feed Ni+V, ppmw	Base	+2.6
Feed Iron, ppmw	Base	+2.1
Reactor Temp, F	Base	+9
Regenerator Temp, F	Base	No change

Thank You!

Paul D. Wendt
FCC Technology Manager
Lummus Refining and Gasification

pwendt@cbi.com

+1-713-375-8358