

BAHLMAN

Debottlenecking HCGO Filtration

Niels van der Horst, Düsseldorf, Germany, October 2011

Agenda

- Company Profile
- HCGO Filtration
 - the problem
 - design principles
 - operations
- Testing facilities
- Reference project
- Questions

Dahlman world wide I

- Head offices in Maassluis, The Netherlands
 - Management
 - Sales
 - Engineering
 - Production

Dahlman world wide II

- Riffa (Bahrain)
 - Sales ME, Gulf Area
 - Consultancy
- Elsloo (The Netherlands)
 - Spare Parts & Consumables
 - Total Supply Frame Agreements
 - Maintenance
 - After Sales Services

Dahlman world wide III

The problem with filtration

- Penetration of contaminants in filter medium
 > Short cycle times
- Element cleaning not powerful and effective
 -> Backwashing with filtered product shows bad results

Result:

- High backwash frequency
- Ex situ cleaning required
- -> excessive product loss
- -> downtime causing production losses

HCGO Filtration Design Principles

- Minimize penetration of contaminants in filter medium
 -> Surface filtration
- Optimal use of filter area at high solids content
 -> Filtration from inside-to-outside
- Element cleaning needs to be powerful and effective
 -> Gas-assisted backwash (steam, nitrogen or (sweet) fuel gas)
- Effective way of sludge disposal
 - > Sludge removal gas-driven or by pump(s)

Minimize penetration of contaminants in filter medium

Not depth filtration ...

Minimize penetration of contaminants in filter medium

But surface filtration!

Filter media used for pilot testing

DAHLMAN CLASSIC SINTERED POWDER, WIRE MESH & DAHLMAN (NEW DEVELOPED) WEDGED WIRE ELEMENTS

- Surface filtration
- Shape stability
- Suitable for high differential pressure
- Easily cleanable using gas assisted back flush technology
- Wide variety of sizes and materials
- High permeability with low pressure drop
- Chemical and heat stability, also for ex situ cleaning

Demonstrated technology for HCGO filtration

Dahlman Filtration

Philosophy III

Dp

• Cleaning

Gas-driven

- Close inlet/outlet
- Pressurize
- Open bottom
 - valve

Dahlman Filtration

Philosophy IV

• Sludge discharge

Testing Facility

Semi Automatic Backflush Test Filter with FCV

Test unit in place

Different elements are tested

Convincing results

Process Specifications

•	Fluid	:	HCGO
•	Particles	:	Coke fines
•	Flow rate		
	- Normal	:	70 m³/hr
	- Maximum (design)	:	76,6 m³/hr
•	Temperature		
	- Operating	:	240 °C
	- Design (mechanical)	:	310 °C
•	Density	:	801,5 kg/m ³
•	Viscosity @ operating temperature	:	0,22 cP
•	Pressure		
	- Operating	:	8,5 bar
	- Design	:	35 bar
•	Maximum allowable pressure drop	:	3 bar

Testing

Questions:

- Which filter media is best able to filter HCGO?
- Will these filter elements be cleaned effectively?
- What are the expected cycle times?
- What is the effect of gas assisted backwashing, can we reach initial clean delta P?

Dahlman Test Rig

Problem Analyses Sintered Powder

Fracture surface SEM-imaging: Device Tescan TS5130MM

Work-Nr.: 2009110040

Magnification: 215:1

EDX Analysis results

Element	Massen%	Atom%
ΟK	38.11	55.26
Na K	0.62	0.63
Mg K	24.68	23.55
AI K	1.28	1.10
Si K	4.24	3.50
SK	1.36	0.98
CI K	9.25	6.05
КК	0.78	0.46
Ca K	1.40	0.81
Cr K	3.45	1.54
Fe K	12.84	5.33
Ni K	1.98	0.78
Insgesamt	100.00	2

Problem Analyses Sintered Powder

Work-Nr.: 2009110040

Magnification: 1000:1

Image comment: Foreign material in pores

EDX Analysis:

Element	Massen%	Atom%
СК	15.90	33.68
OK	18.56	29.52
Si K	10.81	9.80
SK	3.61	2.87
Cr K	25.05	12.26
Mn K	7.53	3.49
Fe K	16.32	7.43
Ni K	2.23	0.97
Insgesamt	100.00	

0911A01522

—50 µm

Analyses of Sintered Wire Mesh

Cut section

Microscopic detail

Analyses of Sintered Wire Mesh

HV: 20.0 kV

DATE: 12/17/09 500 um

Vega ©Tescan

200 um

DET: SE Detector DATE: 12/17/09

HV: 20.0 kV

Vega ©Tescan

Before cleaning

After cleaning

Filtration Test Results

HKGO

Conclusion of the testing

- A significant amount of very small coke particles is present
- Lower operational temperatures than indicated; temperature drops during drum switch (8h-16h operation)
- Improved back flush results using LCGO
- Some filter media is not useful for HCGO filtration

Dahlman HCGO Reference Project

Detailed picture of the special discharge valve

Dahlman HCGO Reference Project

Today's performance

26

Conclusion

- Gas assisted backwash cleaning is today a demonstrated and proven technology for HCGO filtration
- Wear resistant, use of the best components
- Easy operation, no operator intervention required
- Lower use of utilities compared to other technologies resulting in lower operational costs
- Demonstrated in the field, up and running today

Thank you!

Questions?

n.vanderhorst@dahlman.nl

Dahlman Noordzee 8 3144 DB Maassluis The Netherlands T: +31 (0)10 5991112 F: +31 (0)10 5991100 www.dahlman.nl