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• Why stress determination

• vessel bulging and cracking attributable to mechanical 
mechanism rather than metallurgical

• primary mechanical failure mechanism is

� low cycle thermal strain cycling 

• What are 

• the various loadings

• their nature

• contribution to the proposed failure mechanism
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• Major loadings identified

• pressure, live weight, dead weight

• pressure is nominally constant over operating cycle - cyclic

• live weight load from bitumen feed, quench water - cyclic

• dead weight load is constant

• mechanical load due to coke crushing

• as drum contracts, load due to restraint created by solid coke 
residual mass – cyclic, global

• temperature load due to varying temperature of incoming 
streams – cyclic, variable, global & localized

� appears to be most damaging load mechanism 
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• Contribution to failure

• pressure, live weight, dead weight

• not likely due to design stresses well within elastic region, no 
evidence that stresses exceed elastic

• mechanical load due to coke crushing

• feasible load, but not sufficiently severe

• laser scan results do not generally support this mechanism

• incremental distortion not evident

• temperature load due to varying temperatures of incoming 
streams – cyclic, variable, global & localized aspects during 
operational cycle

� magnitude & distribution consistent with nature of failures 
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• Character of temperature loading is complex 

• variation and variability in fluid stream temperatures & impacts 
on drum metal temperature [DMT]

• vapor heat [~ 550 °F], nominally causes uniform rise in DMT; 
however, vapour heat temperature can vary widely per 
operator intervention – can go directly from steam to oil-in 
step � thermal shock

• oil-in [~ 750 °F to 900 °F], nominally causes uniform rise in 
DMT

• as bitumen solidifies and cools, uniform effects give way to 
localized effects
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• Character of temperature loading is complex [cont’d] 

• water quench [~ 250 °F]

• extreme thermal shock imposed on DMT

• ~ 850 °F � 250 °F - oil-in & water quench temperatures

• highly variable DMT due to flow channeling imposing hot 
& cold spots upon the drum shell that are also time 
variable, i.e. T = T (x, y, z, t) or T(θ, z, t)

� highest potential impact on shell structural integrity 
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Pressure & Weight
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Shell Course Temperature
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Shell OD Strain - Measured
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• Coke Drum Vasing -

• an effect of temperature loading

• occurs during oil-in operational step

• condensation heats up lower elevations 
sooner than upper

• differing temperatures in axial direction 
cause variable radial growth in drum

• distortion in drum shell � stresses – but 
where?

Steam / Bitumen /  

Water

Diameter increase due 

to incremental Bitumen 

temperature

Drum diameter 

increase limited 

by vapor heat 

temperature
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• Coke Drum Vasing -

• drum vasing also occurs during

• coke cool-down due to insulating 
effect as coke forms, liquid � solid

• water quench addition

• vasing action is a nominal response

• bitumen filling, water filling occur over 
same repeating nominal time period,     
nominal temperature range 
� plug flow nature

• localized distortions superimposed

• system hydraulics cause channel flow 
& deviations in temperature � strain, 
stress  Steam / Bitumen /  

Water

Diameter decrease 

due to water quench 

temperature

Drum diameter 

decrease lags 

decrease in lower 

elevations
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• Comments on available published data

• Field data validity

• temperature data likely okay, except where insulation is left off

• strain data is highly suspect – fundamental errors in methodology

• thermal strain, eTH is 

• inconsistently accounted for, or

• not accounted for entirely

• evaluation of strain gauge readings is incorrect

• closed form expressions are not appropriate, equivalent strain 
expression premised on 2D model; however, 3D strain state is 
present

• no data measured at most susceptible locations
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• Comments on available published data

• base material failure is accelerated likely due to HEAC

• field & published data regarding base material failure –

• proceeds rapidly in comparison to clad layer failure, 
months versus years

• dependant on operational specifics
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• Temperature loading – understanding the fundamentals

• for isotropic material, temperature increase results 

• in uniform strain

• no stress when body is free to deform

• the total strain in a body, eT is composed of two components 

• mechanical portion = eM [due to pressure, weight, + others]

• thermal portion = eTH

• then, eT = eM + eTH

• when thermal growth is constrained,  eT = 0 � eM = - eTH

• since eTH = α ·ΔT, where α ≡ coefficient of thermal 
expansion or CTE and, the coke drum is in a biaxial 
stress state, then 

� thermal stress, σTH = - E ·α ·ΔT / (1 – µ) 
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• Temperature loading [cont’d]

• thermal expansion in coke drum is constrained due to several 
mechanisms

• skirt structure

• cladding – base material differential expansion due to 
mismatch in coefficient of thermal expansion, CTE

• ΔT between adjacent parts of the structure due to varying 
exposure to incoming streams, i.e. bitumen [hot] and quench 
water [cold]

100 F          800 F

[in/in/F]          [in/in/F]

CTE-clad 6.0E-6      7.1E-6

CTE-base 6.6E-6      8.9E-6
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• Temperature loading [cont’d]
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Thermal Expansion vs Temperature for Various 

Materials of Construction
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• Temperature loading [cont’d]
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E (Young's Modulus) vs Temperature
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• Nature of Drum Failures

• Low Cycle Fatigue – da / dN

• characterized by high strain– low cycle

• exacerbated by presence of code acceptable defects  

• cladding crack failure initiation < 1,000 ~ 2,000 cycles

• cladding crack propagation thru thickness ~ 2,500 cycles

• Environmentally assisted fatigue – da / dt

• exposure of base material to hydrogen assisted mechanism

• short time to through failure – hours to months

• cleavage surfaces evident
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• Number of Drums Reporting 1st Through Wall Crack – API Survey
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• Nature of Drum Failures – cont’d

• Upper bound strain

• measured strain range, Δε = 2,500 ue ~ 3,400 ue

• calculated possible, Δε = 5,140 ue ~ 10,080 ue
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Time

• measurements fall well 
below values governed 
by system parameters

• system parameters 
indicate that strains 
repeat and will cause 
failure at susceptible 
locations
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εεεε

2,570    3,400    5,140    7,200   10,080

N          100,000   25,000    4,800    2,500    1,500

Years          274          68 13        7 4

• ε - N Low Cycle Strain Life Curve for SA 387 12 Plate [2¼ Cr – 1Mo]

* Sonoya, K., et al., ISIJ International v 31 (1991) n 12 p 1424 - 1430

• extremes

• failure can occur within 4 years

• potential service life of 274 years

• actual performance of unit is 
function of system specifics
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εεεε 2,570    3,400    5,140    7,200   10,080

σ σ σ σ 77.1      102.0    154.2    216.0    302.4  

N         10,000     4,200    1,200      550       180

• σ - N Low Cycle Strain Life Curve per ASME VIII Div 2
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appropriate for service life determination
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• Influence of Internal Defects

• Code allows internal defects

• For material thickness over ¾ inch to 2 inch, inclusive [19 mm to 50.8 mm]

• Maximum size for isolated indication is ¼ “ [6.4 mm] diameter

• Table limiting defect size is given in ASME VIII Div 1
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• Stress at Internal Defects

Stress at clad

Stress at internal defect

• largest strains/stresses at

• clad 

• internal defects

• local distortions

• maximum range of strains 
& stresses known due to 
system parameters
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• Conclusions

• field measurement techniques problematic

• thermal strain interpreted as mechanical strain

• measured strains well below upper bound strains

• strains at internal defects inaccessible, no measurement

• strains at material interface inaccessible, no measurement

• upper bound approach determines maximum strains obtainable

• strain level, # of exposure incidents governed by system hydraulics

• strain level, # of exposures govern service life

• local shell deformations will further affect strain levels

• crack initiation function of clad & base material integrity

• through-wall base material failure related to HEAC susceptibility
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• Evaluation

• improve field measurement techniques

• improve design procedures –

• ASME VIII Div 1 not adequate to address complex loadings

• more detailed & accurate estimation of stress required

• need to consider more than material yield strength properties

• material selection opportunities – less expensive options for 
same performance

• preventative maintenance & repair opportunities identifiable
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• Follow up work opportunities

• develop improved field stress measurement technique

• detection of internal defects and assessment technique

• assessment of influence of local shell distortions

• material constitutive modeling for better FEA modeling  

• characterization of base material performance in HEAC 
environment

• identify alternative clad materials

• develop appropriate design methodologies for coke drum

• Joint industry program – to leverage industry & NSERC resources

COKING.COM 2009

COKER DRUM CRACKING



28

• Contact

• Dr. Zihui Xia, University of Alberta

• zihui.xia@ualberta.ca

• John Aumuller, EDA Ltd. 

• aumullerj@engineer.ca
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