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- Why stress determination

- vessel bulging and cracking attributable to mechanical
mechanism rather than metallurgical

- primary mechanical failure mechanism is
- low cycle thermal strain cycling €

- What are
- the various loadings
- their nature
- contribution to the proposed failure mechanism
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- Major loadings identified

- pressure, live weight, dead weight

 pressure is nominally constant over operating cycle - cyclic
- live weight load from bitumen feed, quench water - cyclic
- dead weight load is constant

- mechanical load due to coke crushing

- as drum contracts, load due to restraint created by solid coke
residual mass — cyclic, global

- temperature load due to varying temperature of incoming
streams — cyclic, variable, global & localized

- appears to be most damaging load mechanism €
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- Contribution to failure
- pressure, live weight, dead weight

- not likely due to design stresses well within elastic region, no
evidence that stresses exceed elastic

- mechanical load due to coke crushing
- feasible load, but not sufficiently severe
- laser scan results do not generally support this mechanism
- incremental distortion not evident

- temperature load due to varying temperatures of incoming
streams — cyclic, variable, global & localized aspects during
operational cycle

> magnitude & distribution consistent with nature of failures €<
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- Character of temperature loading is complex

- variation and variability in fluid stream temperatures & impacts
on drum metal temperature [DMT]

- vapor heat [~ 550 °F], nominally causes uniform rise in DMT;
however, vapour heat temperature can vary widely per
operator intervention — can go directly from steam to oil-in
step = thermal shock

- oil-in [~ 750 °F to 900 °F], nominally causes uniform rise in
DMT

- as bitumen solidifies and cools, uniform effects give way to
localized effects
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- Character of temperature loading is complex [cont’d]

- water quench [~ 250 °F]

- extreme thermal shock imposed on DMT
- ~850 °F 2 250 °F - oil-in & water quench temperatures

- highly variable DMT due to flow channeling imposing hot
& cold spots upon the drum shell that are also time
variable, ie.T=T(x,vy, z,t) or T(0, z, 1)

- highest potential impact on shell structural integrity <
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Pressure & Weight
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Shell Course Temperature
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strain in [ue]
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- Coke Drum Vasing -

« an effect of temperature loading

 occurs during oil-in operational step

Drum diameter

increase limited . .
by vapor heat « condensation heats up lower elevations
temperature

sooner than upper

« differing temperatures in axial direction
. . cause variable radial growth in drum
Diameter increase due

to incremental Bitumen \ . .
temperature e distortion in drum shell 2 stresses — but
where?

Steam / Bitumen /
Water
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- Coke Drum Vasing -

 drum vasing also occurs during

Drum diameter  coke cool-down due to |n.sulat|ng.
decrease lags effect as coke forms, liquid - solid

decrease in lower
elevations

« water quench addition

« vasing action is a nominal response

 bitumen filling, water filling occur over
same repeating nominal time period,
Diameter decrease .
due to water quench nominal temperature range
temperature - plug flow nature

« localized distortions superimposed

« system hydraulics cause channel flow

& deviations in temperature - strain,

sJeam / Bitumen / stress
ater

11



COKING.COM 2009
COKER DRUM CRACKING

- Comments on available published data

- Field data validity
- temperature data likely okay, except where insulation is left off
- strain data is highly suspect — fundamental errors in methodology
- thermal strain, ey is
- inconsistently accounted for, or
- not accounted for entirely
- evaluation of strain gauge readings is incorrect

- closed form expressions are not appropriate, equivalent strain
expression premised on 2D model; however, 3D strain state is
present

- no data measured at most susceptible locations

12
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- Comments on available published data
- base material failure is accelerated likely due to HEAC
- field & published data regarding base material failure -

- proceeds rapidly in comparison to clad layer failure,
months versus years

- dependant on operational specifics

13
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- Temperature loading — understanding the fundamentals
- for isotropic material, temperature increase results
- in uniform strain
- no stress when body is free to deform
- the total strain in a body, e; is composed of two components
- mechanical portion = e, [due to pressure, weight, + others]
- thermal portion = ey
- then, e;= ¢, + ey
- when thermal growth is constrained, e; =0 2> ¢, = - ey

- since e;y = a -AT, where o = coefficient of thermal
expansion or CTE and, the coke drum is in a biaxial
stress state, then

- thermal stress, oy =-E-a-AT/ (1 —)

14
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- Temperature loading [cont’d]
- thermal expansion in coke drum is constrained due to several
mechanisms
- skirt structure

- cladding — base material differential expansion due to
mismatch in coefficient of thermal expansion, CTE

100 F 800 F
[in/in/F] [in/in/F]
CTE-clad 6.0E-6 7.1E-6
CTE-base 6.6E-6 8.9E-6

- AT between adjacent parts of the structure due to varying
exposure to incoming streams, i.e. bitumen [hot] and quench
water [cold]

15
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- Temperature loading [cont’d]

Thermal Expansion vs Temperature for Various
Materials of Construction
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- Temperature loading [cont’d]

E (Young's Modulus) vs Temperature
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- Nature of Drum Failures
- Low Cycle Fatigue —da / dN
- characterized by high strain— low cycle
- exacerbated by presence of code acceptable defects
- cladding crack failure initiation < 1,000 ~ 2,000 cycles
- cladding crack propagation thru thickness ~ 2,500 cycles

- Environmentally assisted fatigue — da / dt
- exposure of base material to hydrogen assisted mechanism
- short time to through failure — hours to months
- cleavage surfaces evident

18
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- Number of Drums Reporting 1st Through Wall Crack — API Survey
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- Nature of Drum Failures — cont’d
- Upper bound strain
- measured strain range, Ae = 2,500 ue ~ 3,400 ue
- calculated possible, Ae = 5,140 ue ~ 10,080 ue
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- £¢- N Low Cycle Strain Life Curve for SA 387 12 Plate [2"4 Cr — 1Mo]
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- 6 - N Low Cycle Strain Life Curve per ASME VIl Div 2
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- Influence of Internal Defects
- Code allows internal defects
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. Stress at Internal Defects
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. Conclusions

- field measurement techniques problematic
- thermal strain interpreted as mechanical strain
- measured strains well below upper bound strains
- strains at internal defects inaccessible, no measurement
- strains at material interface inaccessible, no measurement

- upper bound approach determines maximum strains obtainable
- strain level, # of exposure incidents governed by system hydraulics

strain level, # of exposures govern service life

local shell deformations will further affect strain levels

crack initiation function of clad & base material integrity

through-wall base material failure related to HEAC susceptibility

25
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- Evaluation

- improve field measurement techniques
- improve design procedures —
- ASME VIl Div 1 not adequate to address complex loadings
- more detailed & accurate estimation of stress required
- need to consider more than material yield strength properties

- material selection opportunities — less expensive options for
same performance

- preventative maintenance & repair opportunities identifiable

26
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- Follow up work opportunities

- develop improved field stress measurement technique
- detection of internal defects and assessment technique
- assessment of influence of local shell distortions

- material constitutive modeling for better FEA modeling

- characterization of base material performance in HEAC
environment

- identify alternative clad materials
- develop appropriate design methodologies for coke drum

- Joint industry program — to leverage industry & NSERC resources
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- Contact

- Dr. Zihui Xia, University of Alberta
- zihui.xia@ualberta.ca

- John Aumuller, EDA Ltd.
« aumulleri@engineer.ca

EDA

Engineering Design & Analysis Ltd.
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