We create chemistry that makes individual refiners love fueling the world.

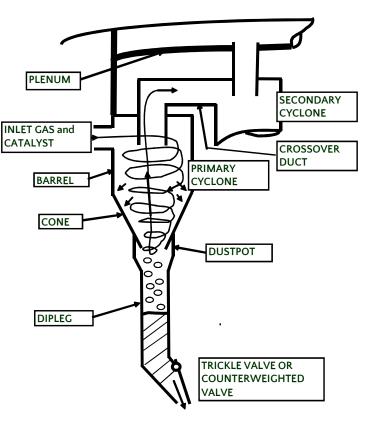
Troubleshooting Catalyst Losses in the FCC Unit

Rebecca Kuo, Technical Service Engineer RefComm Galveston 2016

Overview

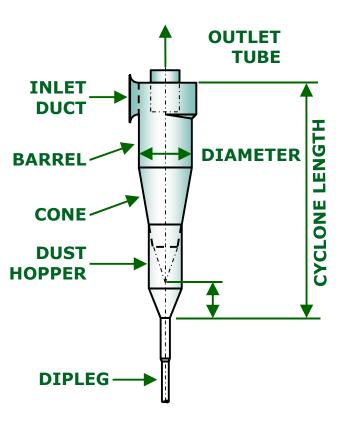
- Introduction
- Cyclone Fundamentals
- Catalyst Attrition
- Monitoring and Troubleshooting Catalyst Losses
- Handling High Catalyst Losses
- Questions

Introduction


- Almost all FCC units have experienced a catalyst loss problem
- Main causes of elevated catalyst losses include:
 - Cyclone problem
 - Catalyst attrition

High catalyst losses can eventually lead to a unit shutdown due to:

- Erosion in the slurry circuit
- · Stack opacity that is out of consent
- Catalyst circulation instability or inability to fluidize
- Excessive catalyst additions


Cyclone Fundamentals

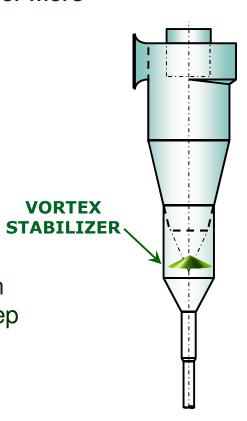
- Cyclones use centrifugal force to separate catalyst particles from the gas
 - The particles are forced to the walls of the cyclone and fall into the dipleg
 - The gas accelerates to the outlet tube at the top of the cyclone
- The recovery efficiency of a conventional two-stage cyclone system is very high at over 99.99%!
 - For example, for a typical 40 mbpd FCC unit, >30,000 tons/day of catalyst are circulated through the cyclones with a total loss of 2.2 tons per day!

Cyclone Operation

- Velocity is a key operating parameter for cyclone performance:
 - Collection efficiency increases with velocity and then drops off due to catalyst reentrainment
 - Catalyst attrition to micro-fines occurs within cyclones and increases with velocity
- The overall cyclone collection efficiency depends on numerous factors including:
 - Number of spirals within the barrel and cone
 - Inlet velocity
 - Particle density and size
 - Catalyst loading

Cyclone Operation

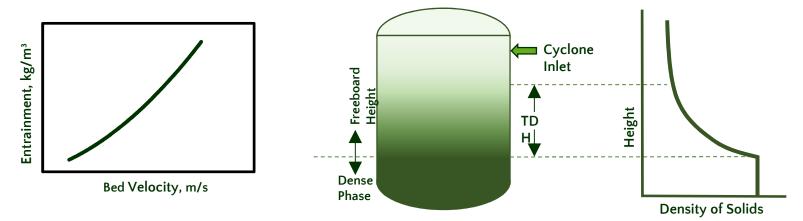
What are the most commonly accepted design limits for cyclones?


Primary Cyclones	Maximum
Inlet Velocity	65 ft/s
Outlet Velocity	150 ft/s
Operating Temperature (304H SS)	1400 °F
Dipleg Mass Flux	150 lb/ft ² .s
Secondary Cyclones	Maximum
Inlet Velocity	75 ft/s
Outlet Velocity	175 ft/s
Dipleg Mass Flux	40 lb/ft ² .s

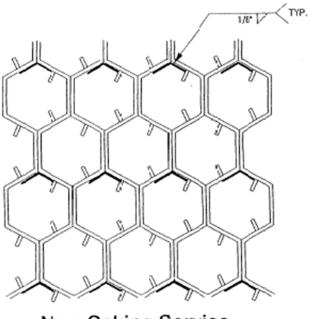
- High velocities can increase catalyst authion
- Dipleg choke can be a concern for primary cyclones
- Sustained high temperatures will reduce the life of the cyclones

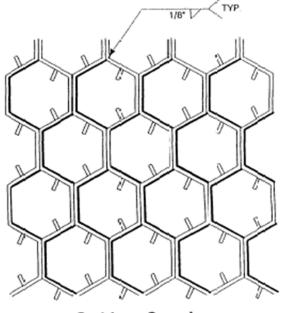
Cyclone Lifespan

Well designed cyclones may have a service life of 20 years or more


- Minimize erosion by:
 - Increasing cyclone length (min L/D of 4)
 - Design to avoid excessive velocities
 - Add a *vortex stabilizer* to secondary cyclones
- Ensuring good inspection and maintenance of refractory during each turnaround
- Control afterburn with CO Promoter and ensure even distribution of air and spent catalyst, to minimize creep and sigma phase embrittlement due to high temperature
- Replacing cyclones? Don't just replace in kind review!!

Catalyst Entrainment


- Cyclone efficiency increases <u>BUT</u> catalyst losses also increase as catalyst loading increases to the cyclones:
 - Reactor: increases with catalyst circulation rate
 - Regenerator: entrainment from the bed increases with *superficial velocity*, and also higher dense bed level if the height of the Cyclone Inlet above the Bed Height is below the Transport Disengaging Height

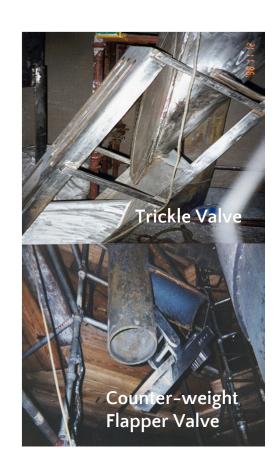

BASF We create chemistry

Refractory Lining

- Hexmesh is the most common anchor for the refractory, which is typically hand-packed
- Reactor-side hexmesh must be fully welded to prevent coke from growing underneath

Non-Coking Service

Coking Service


Common Cyclone Problems: Dipleg Malfunction

Flooded diplegs \rightarrow catalyst carryover due to:

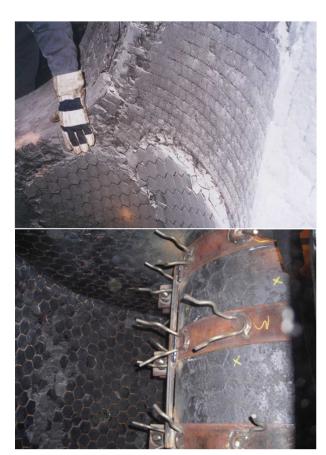
- High catalyst loading/cyclone ΔP /catalyst bed level
- Plugging by refractory, debris, coke or catalyst deposit
- Trickle valve, flapper plate or counterweight plate movement restricted, e.g. due to external coke buildup
- Operation in a de-fluidized dense bed

Unsealed diplegs \rightarrow excessive gas leakage and catalyst re-entrainment due to:

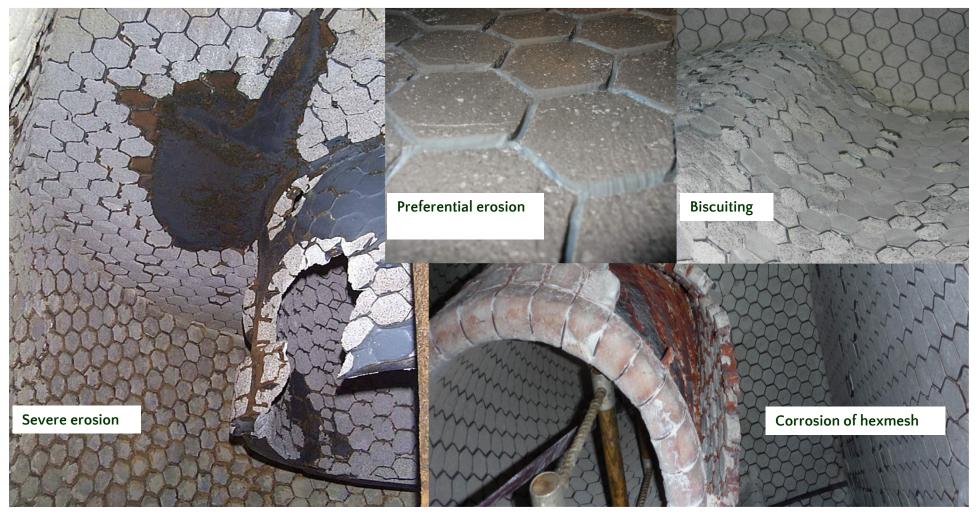
- Low bed level (at start-up; use low velocity initially)
- Loss of sealing plate when operating in dilute phase
- Flapper valve plate stuck in an open position

Common Cyclone Problems: Cyclone Holes

Holes in the cyclone system can occur due to:
Catalyst erosion of refractory/metal from high velocities. Erosion rate proportional velocity to the power of 3 to 5.
Thermal cycling when unit shuts down/restarts – may cause cracks in the plenum head, allowing catalyst to directly bypass from the dilute phase.
Holes can result in gas leakage and disruption of cyclone operation
Often a hole will lead to a gradual increase in losses as the hole enlarges due to erosion
Higher losses from 1st Stage cyclones may be partly handled by 2nd Stage cyclones
Mechanical problem will require unit entry to repair


🗖 = BASF

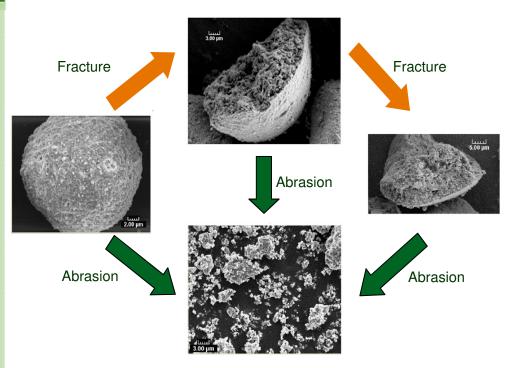
Mechanical Problems


Reactor Cyclone Coking

- Coke will accumulate and grow in cracks and crevices in the refractory, pushing the refractory away from the metal.
- Hex mesh anchors in the reactor should be fully welded along each seam, and any cracks should be properly repaired during turnarounds.
- Coke will often deposit on the outside of reactor cyclone gas tubes. In the event of an upset / thermal cycling, this coke may spall and block the cyclone dipleg.
- As a preventative measure, vee anchors can be installed to prevent coke from spalling

Refractory Damage

Photos courtesy of: QUARTIS



D - BASF

Catalyst Attrition Mechanisms

Catalyst breaks into smaller particles by fracturing and abrasion

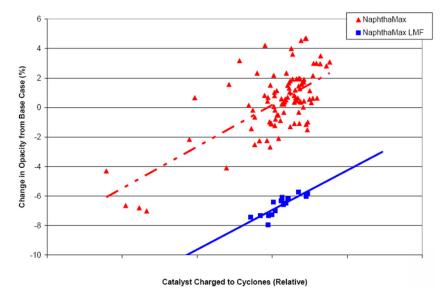
- Large mass of catalyst impacts cyclone refractory walls
- Jets of oil/steam/air cause catalyst particles to collide against each other
- Excessive jet velocities from the air or steam distributors (>300 ft/s) and catalyst loadings to the cyclones can generate micro-fines
- Population balance modelling indicates that *abrasion* is the dominant attrition mechanism in FCC
 - The ASTM D5757 air jet test most closely mimics attrition mechanisms in the commercial unit

D BASF We create chemistry

Causes of Attrition

1. Excessive velocities

- Missing restriction orifice on steam or air nozzles used for aeration, torch oil nozzles etc.
- Eroded or lost stripping steam distributor and/or air grid nozzles
- Feed injectors, air grid, cyclones operating above design guidelines
- 2. Higher catalyst loading to cyclones
 - Cat circulation rate
 - Entrainment to regenerator cyclones
- 3. Catalyst properties and management
 - Unsuitable fresh catalyst attrition propertie
 - Excessive air rate for pneumatic conveying during catalyst loading to/from hopper


Catalyst Attrition Properties

Minimizing micro-fines is particularly important for low stack opacity

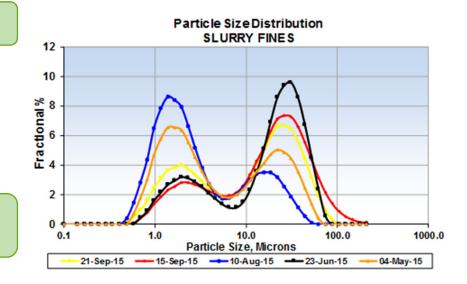
- Micro-fines are 0.5-2.5 micron material
- Fines generation increases with higher fresh catalyst addition rate

Attrition is just one aspect of catalyst design and formulation

- A low catalyst attrition may be needed in some cases due to local emission limits or unique aspects of the FCC unit design
- Often a lower attrition requires a compromise on other aspects of catalyst performance
- Discuss the attrition requirements of your FCC catalyst with your catalyst supplier

D BASF We create chemistry

Catalyst Loss Monitoring


Good base line monitoring is essential

Earlier identification of loss problems

 Gives more time to troubleshoot, potentially correcting the problem *before* emissions limits are exceeded, or implementing steps to achieve *sustainable* operation until the next turnaround

More effective troubleshooting when loss problems occur

 The first troubleshooting step is finding what has changed compared to normal operation? A baseline is essential.

BASF We create chemistry

Catalyst Balance

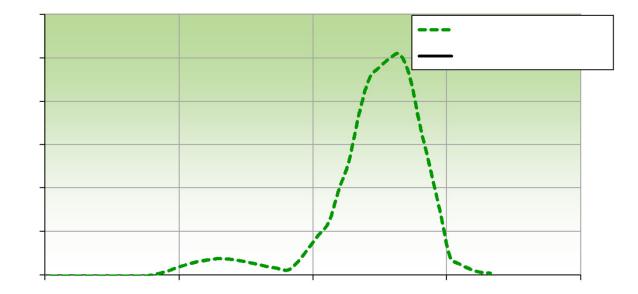
• A best practice is to calculate the catalyst mass balance every month

Catalyst Additions = Regen Losses + Reactor Losses + Withdrawals + Accumulation

- Verify catalyst additions using hopper dips or loader weigh cells, and reconcile with fresh catalyst deliveries – remember to correct for Loss On Ignition
- Regenerator losses are calculated by difference. If you collect fines from the regenerator flue gas, determine the amount to calculate stack losses
- Reactor Losses = Slurry rate x Ash content
- Monitor spent catalyst withdrawals via hopper dips or weigh bridge
- Estimate change in unit inventory based on Reactor and Regenerator levels

Catalyst Loss Monitoring

- Additional monitoring of the unit should include:
 - Regular review of fresh catalyst properties PSD, ABD, LOI, Attrition Index
 - Weekly testing of equilibrium catalyst physical properties PSD, ABD
 - Particle size analysis of slurry fines, third stage fines, etc. at least monthly
- Slurry ash content 1-2 times per week, A regular review of data and monthly and daily BS&W tentingle the best chance to identify a loss problem
 - It may take several weeks for a loss problem to be confirmed


Catalyst Loss Troubleshooting: Identifying the Problem

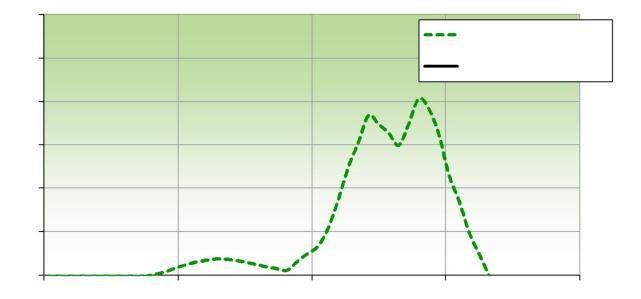
Fines analysis is the most useful source of data for identifying the type of loss problem!

Blocked dipleg or loss of efficiency

A step change or gradual increase in losses from *either* the reactor or regenerator side, and a decrease in Ecat fines content (<45µm).

Fines will have an abnormally high peak at around 30-50 microns, and the attrition peak will be small. PSD of losses (Slurry Fines, 3rd Stage Fines, ESP):

BASE


Catalyst Loss Troubleshooting: Identifying the Problem

Fines analysis is the most useful source of data for identifying the type of loss problem!

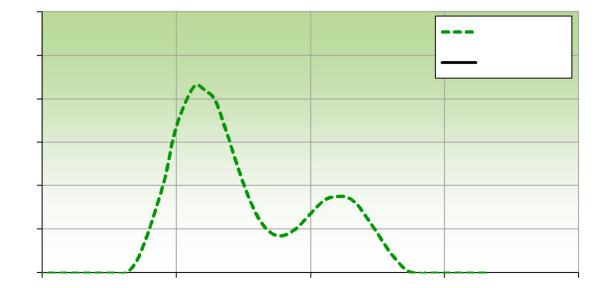
Hole in cyclone or plenum

A hole or plenum crack will often present as a gradual increase in losses from either the reactor or regenerator. Depending upon the extent of losses, the Ecat fines (<45µm) may not decrease. Fines PSD will often show a new peak at around 70-80 microns.

PSD of losses (Slurry Fines, 3rd Stage Fines, ESP):

BASE

Catalyst Loss Troubleshooting: Identifying the Problem


Fines analysis is the most useful source of data for identifying the type of loss problem!

Attrition problem

Often a gradual onset, with an increase in *both* reactor and regenerator losses, and an increase in Ecat fines content (<45µm).

Fines will have an abnormal peak at around 1-2 microns

PSD of losses (Slurry Fines, 3rd Stage Fines, ESP):

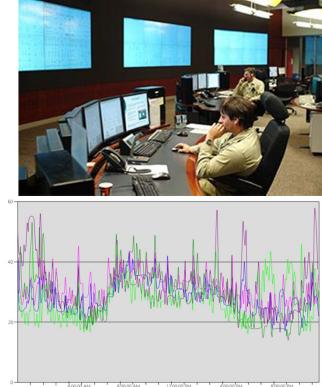
🗖 = BASE

Investigation Steps to Consider

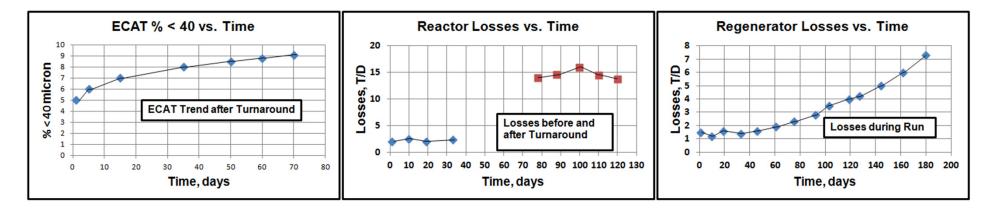
- Review the nature of the losses:
 - Gradual increase with increased <2.5 μm peak in fines PSD \rightarrow Attrition
 - Gradual increase with increased peak in fines PSD ~ 70 $\mu m \rightarrow$ Hole enlarging
 - Step change \rightarrow Mechanical failure or operating problem
- Intermittent Check potential attrition sources: Equipment velocities, steam distributor P, catalyst properties/additions, confirm all flow RO's in place, blast steam closed, etc.
- Review operating conditions: Sudden loss in vessel pressure, regenerator bed defluidization due to low air rate, higher feed rate leading to reactor cyclone flooding, etc.
- Review inspection history: Has a similar problem occurred in the past?
- Conduct tests: Gamma scans for vessel and cyclone dipleg levels, radioactive tracers for gas/catalyst flow distribution, etc.

Review Operating Conditions

Review operating conditions to check for a significant deviation from normal/original design, for example:


- Sudden vessel pressure loss
- Regenerator bed de-fluidization due to low air rate
- Capacity creep

Reactor cyclone flooding may be caused by:


- High velocity (higher feed rate, more gas, lower pressure etc.)
- High cat circulation rate
- High stripper level

Regenerator cyclone flooding may be caused by:

- Excessive catalyst entrainment to cyclones from bed due to
 - High bed velocity, higher bed level, lower pressure, lower density catalyst
- High cyclone velocity (increased air rate, lower pressure etc.)
- High regenerator bed level

Catalyst Loss Troubleshooting – Examples

- Missing RO in torch oil nozzle steam purge line led to catalyst attrition due to high velocity steam jet
- Led to double the fines content in the ecat
- Refractory (turnaround repair) dropped from plenum roof and plugged a cyclone dipleg
- Led to losses to the main column (seen in the high slurry ash)
- Cyclone plenum crack (aged plenum) opened during the run following a thermal cycle due to a unit shutdown

🗖 = BASF

We create chemistry

 Led to gradual increase in losses

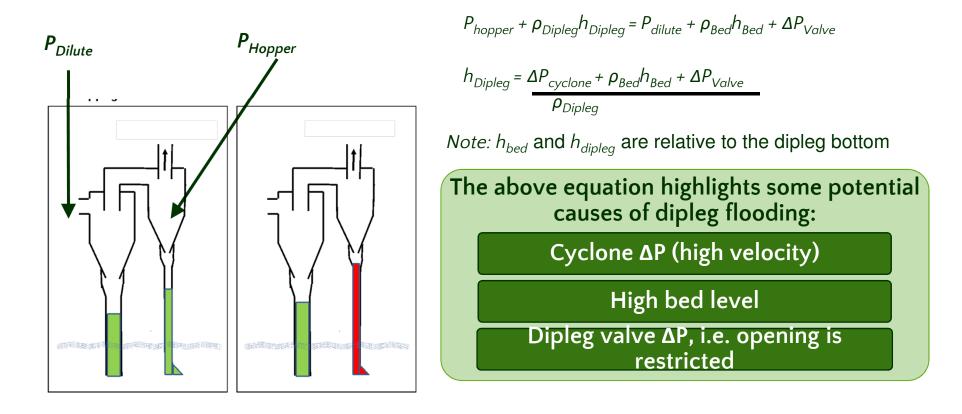
Handling Catalyst Losses: Mechanical Problem

Immediate actions	 Adjust operating conditions, reduce throughput slightly and observe effect on losses Check instrumentation, especially levels Conduct pressure bumping Try unloading / re-loading catalyst
Longer term actions	 Maintain inventory with Ecat and Fines Recycle catalyst back from ESP / 3rd Stage separator If reactor side losses: Expect erosion in slurry pumps, and monitor slurry pumparound for fouling. Consider slurry recycle to reduce Fractionator Bottoms ash content

D - BASF

Handling Catalyst Losses: Attrition Problem

Immediate actions	 Review operating conditions Check potential attrition sources in the unit Check fresh catalyst properties
Longer term actions	 Reformulate to a more attrition resistant catalyst If the unit has an ESP, seek to reduce opacity with NH₃ injection, optimize gas inlet temperature, etc Consider settling aid chemicals if slurry ash content is high to improve tank settling


D - BASF

Appendix

Dipleg Pressure Balance

BASE

We create chemistry