

Improving FCC Unit Performance

Mel Larson, Principal Consultant

© 2015 KBC Advanced Technologies plc. All Rights Reserved.

29 March 2015

Biography

KBC Advanced Technologies Inc.

15021 Katy Freeway Suite 600 Houston, TX 77094

Tel +1 281 597 7943 Mob +1 281 831 8202 Fax +1 281 616 0900

MLarson@kbcat.com

Melvin G. Larson Principal Consultant

<u>Profile</u>

- Principal Consultant at KBC with over 31 years experience as a Chemical Engineer.
- Responsibilities include but are not limited to specialty consulting in FCC, serving as Project Manager on various KBC projects, and as Manager / Principal Advisor on 150 KBPD grassroots refinery build.
- Consulting services specialize in process troubleshooting and profit improvement analysis in the FCC, Unsaturates Gas Plant, Alkylation and Naphtha Reformer areas.
- 10⁺ years refinery hands-on experience with unique awareness to day-to-day operations / troubleshooting.

KBC Experience

- Technical Advisor to National Oil Company's new Latin American refinery project. FEL-0 through FEL III
 assistance in complete complex and build both strategic and in detailed work assistance with owner, licensors
 and EPC firm.
- Served as project manager on Profit Improvement Programs with extensive international experience, working in USA, Europe, Australia, South America, South Korea and Japan.
- Worked as key advisor on a grassroots complex refinery build. Personal responsibilities required overall refinery knowledge and capability to manage and coordinate multiple disciplines on both client and company aspects of the work.
- Assisted majors in various troubleshoot operations on FCC, including excessive catalyst losses, the reoptimization of operation for higher conversion with existing equipment.
- Identified and implemented charge rate increase in USGC FCC by 3 kbpd without investment and over 20% additional capacity in Japanese FCC Unit without investment.
- Coordinated FCC and Unsaturate Gas Plant analysis on major Yield and Energy Surveys throughout the world. The unsaturate gas plant analysis often includes rigorous simulation of the facilities.

Education

• B.S. in Chemical Engineering from Rose-Hulman Institute of Technology.

PROPRIETARY INFORMATION

Abstract

- The FCC has been the centroid of the US refining gasoline production business for the last 60 yrs.
- New regulatory and emissions targets such as 2017 Tier 3 sulfur targets and the proposed FCC Flue gas emissions values are the latest challenges for the refiner.
 - If post treating of FCC cat gasoline is required the loss of octane will put a constraint on meeting the regulatory requirements.
- The value of the FCC is to maximize the yield of "profitable" components of C3 through LCO.
- This presentation will cover a range of options for the FCC plant to consider in in maximizing the profit of the plant with every effort to maximize the volume of most profitable products.

Outline

Maximizing Volume and Profit

✓ What is the definition of maximum volume in the FCC?

Maximizing Profit

- ✓ Profit regionally defined
- ✓ Refinery profit balance
- ✓ What are the value added products
- Options to Maximize profit on the main column

Adjustments to Consider

- Operational thoughts
- Additives and Catalyst options
- Investment Considerations

Summary

"Maximizing Volume and Profit"

29 March 2015

PROPRIETARY INFORMATION

Volume "Swell" or Expansion

 Historically, in the USA one of the key metrics is looking at the C3+ volume expansion.
 Simply defined

Simply defined (LPG+Gasoline+LCO+Slurry)/Feed

Consider reactor yields and the recovery of these molecules

- Recovery considers
 - C3 out of fuel gas
 - C3s in C4s, C4s in C3s
 - Overlap or Gap between Naphtha and LCO, LCO / Slurry

Volume "Swell" or Expansion

Fractionation Efficiency Matters

- Optimizing Column performance is a critical criteria in maximizing recovery and the highest value for the refinery
- Operation of the main column is a balance of heat loads / sinks, sponge oils, and internal tower traffic to minimize down grading value.
- ➢ Guides
 - Minimum LCO in Slurry, i.e. maximize the temperature below grid
 - Insure sufficient liquid traffic i.e. dry trays below draws are not unusual

OPR-FCC-CS2-L207

Maximizing Profitability

Profit – Regionally Defined

 Maximizing recoverable volume is the first priority within the context of the region or location of the unit.

And

- Maximum profit means yielding the highest volume of the most valuable products.
 - Typically, in the gasoline centric market of the USA, maximum volume generally means maximum conversion without "overcracking" of naphtha to LPG.
- Regional Sensitivity (one example)
 - USGC Propylene to Alky Feed Differential 10-14\$/bbl
 - Chemical value exceeds propylene alkylation
 - MidContinent Propylene costly to get into PetChem Market

Profit – Balance

- Reality Check
 - Maximizing profit is a blend of feed rate and quality with the specific hardware constraints of a given unit.
 - Gasoil allocation and product market is an input to operation
- Competitive Yield / Markets

Unit	<u>C3+Volume Exp</u>	Mid-distillate Selectivity
Hydrocracker	120 LV%	70-80%
FCC	110-115 LV%	15-30%

- Typical FCC hardware constraints
 - Air blower (coke), wet gas compressor (dry gas yield), and Column limits (Main, absorber, debutanizer etc.) flooding

What are the Valuable Products

- Looking forward to post 2017
 - C3/C4s (alky feed) > LCO > FCC naphtha > Slurry or gas
 - USGC Alkylate is 15-25\$/bbl over RUL
 - With Tier 3 and octane losses Alkylate will be valued HIGHER
 - Globally diesel market is higher than gasoline thus LCO that can be treated into Diesel market great value
- Current and future adjustments
 - Cut FCC Naphtha lighter (higher octane) lower octane debit
 - 370-430°F FCC Naphtha into diesel pool up to cetane limit
 - Increased value of FCC moving to 30% diesel selectivity
 - Maximize LCO out of Slurry
 - Operate desuperheat section hotter allowing more LCO recovery with potential of coking off the grid section

Options to Maximize Value

- Maximizing the temperature at the bottom of the grid to 725-735°F (Max LCO)
 - Pool temperature 700°F with quench stream
- Keep trays wet
 - Dry trays cause endpoint excursions in LCO
- Consider yielding a HCO cut for hydroprocessing
 - CFHT or Hydrocracking
 - Minimize Slurry

OPR-FCC-CS2-L207

Adjustments to Consider

Operational Considerations

- Reactor / Regenerator Operational Considerations
 - In general maximizing Cat/Oil benefits liquid recoverable yield
 - Reactor Temperature set by
 - Propylene, Alky feed, and Debutanized octane requirements
 - Minimizing thermal reactions can benefit yield selectivity
- Naphtha in Riser
 - Naphtha in the riser acts like a "cat cooler"
 - Lower thermal conditions at the point of contact with gasoil
 - Higher C/O at constant coke
 - Naphtha priority (Coker, FCC heartcut)
 - Naphtha will crack with about 20-30% converted to mixed
 C3/C4s typical of FCC distribution (minimal coke and gas yield)

Operational Considerations - Steam

• Feed Nozzle performance

Sauter Mean Droplet Size

- Droplet size is a function of nozzle ∆P
- The chart provides a reference or index one can use for understanding droplet size
- Increasing steam to the nozzles increases ΔP and tip velocity
- Combined value of lower droplet size is improved gasoil/catalyst mixing and more efficient cracking and lower ∆Coke

Operational Considerations - Steam

- Spent Catalyst Stripping
 - Minimizing hydrocarbon to the regenerator lowers air demand and regenerator bed temperatures
 - The percentage of hydrogen on coke values should be below 7 with pacesetters at 6. Above a value of 7 indicates hydrocarbon slip into the regenerator
 - Some companies using advanced controls use stripping steam as a means to control the regenerator bed temperature.
 - The stripping is partial pressure on hydrocarbon
 - Stripping can be improved by
 - Two stage stripping
 - Grid or other open type of structure to maximize catalyst break up through stripper and using all of the available diameter
 - Minimize hydrocarbon re-contact with top of stripping bed

Minimize Recontacting

Additives and Catalyst Options

- Additives
 - Bottoms upgrading
 - ZSM-5 over more distillate selective catalyst
 - Minimize gasoline to octane value while making diesel and LPG
- Catalyst options
 - Modern FCC catalyst functions well with up to 0.3 wt% CRC
 - Catalyst options are possible considering to meet specific unit requirement
 - Caution Make sure the unit is optimized in evaluating the benefits of a catalyst change

Investment Considerations

- Spent Cat Stripper upgrade
 - Internals to improve hydrocarbon removal at higher C/O
- Chilling absorption fluids
 - Chilling lean oils / heat removal in recovery system aids in recovery and capacity
- Column operations
 - Packing of the FCC Main Fractionator
 - Monitoring water in the Recovery section
 - Water reduces effective diameter causes flooding or foaming
 - Packing absorbers / Dethanizer strippers
 - High Capacity trays for columns

Summary

- Maximizing Volume and Profit is the balance of feed and hardware
- Identify and understand which products carry the most value from the FCC
 - Seasonality, down stream constraints, system demands all are dynamic and require routine monitoring to maximize the value.
- The investment into the asset can yield the greatest value and flexibility
 - FCC has the ability to produce more or less LPG, octane, and bottoms
- If the FCC has feed capacity, recycling of select streams as a means to further maximize profit

