

Impact of Feed Properties and Operating Parameters on Delayed Coker Petcoke Quality

Robert (Bob) Clarke Process Manager, Refining

Canada Coking Conference October 22 – 26, 2012 Fort McMurray, Alberta, Canada

Categorizing Petroleum Coke

<u>Usage:</u>

- Fuel Grade
 - Power Generation
 - Cement manufacturing
- Anode Grade
 - Aluminum Grade
 - "Calcinable"
 - Electrode Grade
 - Steel Electric Arc Furnace
 - "Calcinable"

Appearance:

Shot Coke

- Small spherical balls
- "Beebees"

Sponge Coke

- Amorphous
- May contain shot beebees

→ Needle Coke

- Crystalline
- Clusters of aligned needles

Coke Formation

- Thermal cracking of paraffins & Paraffinic side chains.
- Polymerization & aromatic formation.
- Heavy aromatics condense to a mesophase.
- Mesophase converts to coke.
- Asphaltenes & very high MW aromatics rapidly convert to coke skipping mesophase.
- Thermal Cracking is endothermic
- Condensation & coke formation is exothermic

Petroleum Coke General Properties

- Volatile Combustible Matter (VCM)
- Hardgrove grindablity index (HGI)
- Contaminants
 - Sulfur
 - Nitrogen
 - Metals
- Ash
- Granulometry (fines)

Petroleum Coke General Properties: Volatile Combustible Matter (VCM)

- VCM is unconverted pitch
 - Target 12% Max, fuel coke 9% to 10%
 - 14% VCM is very high; Coke will be soft
- Increases green coke hydrogen content
- Rules of thumb for control in fuel coke
 - Increase heater outlet 5-7 °F for 1% decrease in VCM
 - Increase heater outlet 1-2 °F for each hour reduction in coking cycle time
- Best practice: Increase heater outlet 5-7 °F in final hours of coking cycle

Petroleum Coke General Properties: Hardgrove Grindability Index (HGI)

- Gauge of relative hardness and friability (tendency to form fines)
- Function of VCM, cycle time & coke type
- High Asphaltene feeds producing coke of 8-9% VCM may have HGI < 30 (18 hr coking cycle)
- Will increase with decrease in coking cycle

Petroleum Coke General Properties: Sulfur, Nitrogen, Metals & Ash

- Determined by feedstock & coke yield
- Intrinsic values & not readily controllable except by feed treatment
- Typical range:
 - Coke S = typically (1.25 to 1.4) x Feed
 - Coke N = typically (2.25 to 3.0) x Feed
- · Feed metals & ash end up in coke

Petroleum Coke General Properties: Granulometry

- Granulometry: fines (<1mm) not desirable
- "soft" coke makes more fines: decrease VCM / HGI
- Fines generation:
 - Crusher comminution;
 - Jet pump specification & cutting nozzle wear, under-powered systems can lead to grinding
 - Coke cutting technique: do not use "washing"
 - Coke reclaim: Bridge crane vs FEL
 - Coke handling design: minimize no. of transfers
- Maintain wet coke at moisture levels of 7%+ to minimize coke drying and windborne fines

Feed Properties Affecting Coke Yield and Quality

- Gravity
- Distillation
- Concarbon residue (CCR)
- Asphaltenes (Heptane Insolubles / HIS)
- Sulfur
- Nitrogen
- Metals/ Ash
- Hydrogen content / Aromaticity

Delayed Coking Control Variables

•Higher Temp \rightarrow lower coke VCM content

- •Low Pressure →higher liquid yields / lower coke yield
- •Low Recycle \rightarrow higher liquid yields / lower coke yield
- •Shorter cycles require increase in temperature

Variable	Fuel Coke	Anode Coke	Needle Coke
Temperature, °F	910 - 930	925 - 950	925 - 950
Pressure, psig	15 typical	18 – 60+	50 - 90+
Recycle Ratio	0 - 5% typical	0-50%+	60 – 120%+
Coking Time, hours	9 -18	24	36

Fuel Coke Units Design & Operating Considerations

- Maximize liquids; minimize coke
 - Minimize pressure and recycle rate
 - Maximizes Heavy Coker Gas Oil (HCGO) and its end point
- Coke structure ranges from sponge to shot
- Shot Coke
 - Made with high Asphaltene (HIS) feed
 - Rule of Thumb: CCR / HIS < (2 2.2)
 - Need to mitigate coke drum hot spots/ uncontrolled drum dumps

Best Practices for Shot Coke

• (1) Coker Design

FOSTER

- Slide valve unheading
- High steam sweep on inlet nozzle
- Safety interlocks for drum isolation & operation
- (2) Operational techniques
 - Complete water quench & fill; slow optimized quench; soak period or overflow operation
 - Track water flows to verify drum fill
 - Ramp COT esp. for short cycle operations
 - Maintain forward flow at all times
 - Optionally use decant oil/ low temp for initial 1 2 hours

Best Practices for Shot Coke (cont'd)

•(3) **Operating Instructions & Safety Measures**

- Audible & visual alarms
- Non-essential personnel off structure during unheading & cutting
- Operator awareness of hot spot tell-tales
- Operators remain in shelters or operate remotely
- Use PPE during head removal (non-slide valve)
- Precaution when steam blowing transfer line

 Verify that crane, FEL etc. operators are notified prior to unheading

Fuel Coke: Typical Properties

VCM, Wt. %	12 Max.
Moisture, Wt%	8-12
HGI	35-70+
Sulfur, wt%	3.5-7.5
<u>Elemental Analysis</u>	<u>DRY</u>
Basis: 10 VCM	
С	88.0
Н	3.8
S	5.0
Ν	1.65
0	1.2
Ash	0.35
HHV, Kcal	3926
LHV. Kcal	3896

Fuel Coke Marketing

- Typical markets:
 - Boiler fuel / Power
 - Circulating Fluid Bed with limestone S capture
 - Pulverized carbon (100% in arch PC boilers)
 - Fuel for Cement/Lime kilns
 - Co-firing with oil / coal / gas
- Total world production approx. 80 MM MTPA vs coal market 6500 to 7000
 - Higher caloric value (can be as high as 75%)
 - Lower ash content
 - But higher sulfur content compared to coal
 - Particularly attractive in cement/lime kilns which operate at higher temperatures and SO₂ from coke is absorbed by the process

Fuel Coke Marketing (cont'd)

- Market availability is not an issue
 - Sells at small discount to coal
 - displaces coal
- Netback value depends on
 - Contract / spot market sales
 - Refinery location
 - Discount at S > 5.5 wt%
 - Storage & transportation costs

Anode Coke

- Typical specification limits
 - S < 4 wt%; V < 400 ppmw; no shot / < 3% embedded
 - Premium grade: S < 1.5 wt%; V < 150 ppmw
 - Vibrated Bulk Density (VBD): > 0.85 g/cc
 on -28/+48 mesh
- VBD correlated to HGI & VCM
 - Increase heater outlet to increase VBD
- Feedstocks
 - Low sulfur / metals residues; unfiltered coal tar
 - Distillate tars demonstrated by Foster Wheeler

Anode Coke Units Design & Operating Considerations

- Operating Conditions
 - Pressure: 18 to 60+ psig
 - Temperature: 15 to 40 °F higher than typical fuel operation
 - Recycle: 0% to 50%+
- Design considerations include:
 - High energy coke cutting
 - High design temperatures
- Operate in block operation with Fuel Coke

Feed Pretreatment for Anode Coke

Anode Coke: Typical Properties

	<u>Green</u>	Calcined
VCM, Wt. % Dry Basis	12 Max.	N/A
Sulfur, Wt. %	4.0 Max. (1)	3.5 Max
Ash, Wt. %	0.40 Max	0.40 Max
Nickel, ppmw	250 Max	200 Max
Vanadium, ppmw	400 Max (1)	350 Max
HGI	60 to 100 typical	
Vibrated Bulk Density, g/cc (ASTM D42	0.87 Min	
Real Density, g/cc		2.05 Min
Granulometry, + 4 mesh		30%
- 28 mesh		10%
 (1) Variable depending on purchaser's final coke blend. (2) Additional metals specifications (Si, Fe, Ca, and Na) apply. 		

Anode Coke Marketing

- Current high demand
 - 0.4 lbs carbon anode consumed per lb aluminum produced
- World market approx. 17 to 20 MM MTPA
- Purchasers distinguish
 between anode grades
 - Premium
 - (S < 1.5 wt%, V < 150 ppmw)
 - Regular
 - Blend coke
 - (S ~ 4 wt% max, V ~ 400 ppmw max)

Needle Coke

- Feeds are aromatic tars with low sulfur & metals: best decant oil or thermal tar
 - Multi-ring aromatics with short aliphatic side chains
 - Nil asphaltenes
 - Feed desulfurization may be necessary
- Important specifications
 - Coefficient of thermal expansion (CTE): Varies with grade
 - Granulometry
 - S, N, ash & metals
- Operations
 - Pressure: typ. 50 to 90 psig
 - Recycle: 60 to 120%
 - Proprietary post-treatment
 - Drum Size: < 7.3 m</p>

Needle Coke: Typical Properties

	<u>Green</u>	Calcined	Graphite Artifact	
Sulfur, Wt%	0.5	0.5		
Nitrogen, Wt%	0.7	0.5		
Nickel, ppmw	5-7	-	-	
Ash, Wt. %	0.1 Max	0.1 Max		
VCM, Wt. % Dry Basis	6 Max	-		
Real Density, g/cc		2.10-2.14		
CTE, x 10-7/ °C			2.5 (30-125°C)	
Electrical Resistivity,			320	
Ohm-In x10 ⁻⁶				
Granulometry, wt%,	+ 6 Tyler (Maximum practical)			

FOSTER

Needle Coke Marketing

- Small specialty market
- Approx. 1.2 MM MTPA
- Grades dependent on CTE
 - Regular
 - Premium
 - Super Premium
- Approx. half dozen manufacturers
 - Supply constrained one with more than 50% share
 - Market demand some manufacturers left market to increase refinery margin making fuel coke with low price heavy crude.
- Approx dozen purchasers

Foster Wheeler SYDECsm has Extensive Experiences in All Applications

- Fuel Grade Coke
 - 66 units [new + existing]
 - 42 in operation
 - 39 licenses in past 4 years
- Anode Grade Coke
 - 32 units
 - 5 licenses in past 4 years
- Needle Coke
 - 7 units
 - Major pilot plant evaluations

FOSTER

www.fwc.com